Thin films of silica containing silver nanoparticles were deposited by magnetron co-sputtering followed by thermal annealing in air or Ar+2% H2. Laser fragmentation of the particles was carried out at two different wavelengths. The films were characterized by UV-VIS absorption spectroscopy and plasmon resonance numerical modeling based on the Mie theory, together with Rutherford backscattering elemental analysis, X-ray photoelectron spectroscopy chemical characterization, combined with statistical analysis of the transmission electron microscopy micrographs, and surface topography study by atomic force microscopy. It is demonstrated that the fragmentation is a result of a thermal process and its mechanism does not depend on the laser wavelength as long as the laser light is absorbed by the silver particles. Laser treatment with moderate fluences does not alter the precipitated metal content while fragmenting the particles. TEM study indicates that laser assisted silver particle modification can serve as a method for narrowing the particle size distribution.
Download full-text PDF |
Source |
---|
J Agric Food Chem
January 2025
College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China.
Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.
View Article and Find Full Text PDFRSC Adv
January 2025
Département de Chimie, Faculté des Sciences et de Génie, Université Laval Québec QC G1V 0A6 Canada.
Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.
View Article and Find Full Text PDFNanotechnol Sci Appl
January 2025
Department of General Surgery, Taicang Affiliated Hospital of Soochow University, Suzhou, 215400, People's Republic of China.
ACS Omega
January 2025
Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, Colorado 80918 United States.
The development of a sensitive and selective silver nanoparticle assay for the quantitation of vitamin C (SNaP-C), as ascorbic acid (AA) and total ascorbic acid (TAA = AA + dehydroascorbic acid, DHAA), is described. Three assay parameters were investigated and optimized: (1) synthesis of silver nanoparticles (AgNPs) to produce a reliable enhanced localized surface plasmon resonance (LSPR) in the presence of specific added antioxidants; (2) ensuring long-term stability of AA and DHAA in aqueous solutions; and (3) SNaP-C assay conditions to allow for rapid analysis of samples (beverages) by monitoring the enhanced LSPR. The synthesis of AgNPs using soluble starch as a capping agent and d-arabinose as a reducing agent was optimized in a CEM Discover SP laboratory microwave.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Metal Research (IMR), Chinese Academy of Science, Wenhua Road, Shenyang, China.
Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!