Experimental study of interaction of laser radiation with silver nanoparticles in SiO2 matrix.

J Nanosci Nanotechnol

New College of Florida, Division of Natural Sciences, 5700 North Tamiami Trail, Sarasota, FL 34243-2197, USA.

Published: March 2006

Thin films of silica containing silver nanoparticles were deposited by magnetron co-sputtering followed by thermal annealing in air or Ar+2% H2. Laser fragmentation of the particles was carried out at two different wavelengths. The films were characterized by UV-VIS absorption spectroscopy and plasmon resonance numerical modeling based on the Mie theory, together with Rutherford backscattering elemental analysis, X-ray photoelectron spectroscopy chemical characterization, combined with statistical analysis of the transmission electron microscopy micrographs, and surface topography study by atomic force microscopy. It is demonstrated that the fragmentation is a result of a thermal process and its mechanism does not depend on the laser wavelength as long as the laser light is absorbed by the silver particles. Laser treatment with moderate fluences does not alter the precipitated metal content while fragmenting the particles. TEM study indicates that laser assisted silver particle modification can serve as a method for narrowing the particle size distribution.

Download full-text PDF

Source

Publication Analysis

Top Keywords

silver nanoparticles
8
laser
6
experimental study
4
study interaction
4
interaction laser
4
laser radiation
4
silver
4
radiation silver
4
nanoparticles sio2
4
sio2 matrix
4

Similar Publications

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

The development of a sensitive and selective silver nanoparticle assay for the quantitation of vitamin C (SNaP-C), as ascorbic acid (AA) and total ascorbic acid (TAA = AA + dehydroascorbic acid, DHAA), is described. Three assay parameters were investigated and optimized: (1) synthesis of silver nanoparticles (AgNPs) to produce a reliable enhanced localized surface plasmon resonance (LSPR) in the presence of specific added antioxidants; (2) ensuring long-term stability of AA and DHAA in aqueous solutions; and (3) SNaP-C assay conditions to allow for rapid analysis of samples (beverages) by monitoring the enhanced LSPR. The synthesis of AgNPs using soluble starch as a capping agent and d-arabinose as a reducing agent was optimized in a CEM Discover SP laboratory microwave.

View Article and Find Full Text PDF

Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!