AI Article Synopsis

Article Abstract

We introduce a charge-coupled device (CCD) camera-based detection scheme in dynamic light scattering that provides information on the single-scattered autocorrelation function even for fairly turbid samples. It is based on the single focused laser beam geometry combined with the selective cross-correlation analysis of the scattered light intensity. Using a CCD camera as a multispeckle detector, we show how spatial correlations in the intensity pattern can be linked to single- and multiple-scattering processes. Multiple-scattering suppression is then achieved by an efficient cross-correlation algorithm working in real time with a temporal resolution down to 0.02 s. Our approach allows access to the extensive range of systems that show low-order scattering by selective detection of the singly scattered light. Model experiments on slowly relaxing suspensions of titanium dioxide in glycerol were carried out to establish the validity range of our approach. Successful application of the method is demonstrated up to a scattering coefficient of more than micro(S) = 5 cm(-1) for the sample size of L = 1 cm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.45.001756DOI Listing

Publication Analysis

Top Keywords

multiple-scattering suppression
8
dynamic light
8
light scattering
8
detection scheme
8
scattered light
8
suppression dynamic
4
light
4
scattering
4
scattering based
4
based digital
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!