We studied early neurulation events in vitro by transplanting quail Hensen's node, central prenodal regions (before the nodus as such develops), or upper layer parts of it on the not yet definitively committed upper layer of chicken anti-sickle regions (of unincubated blastoderms), eventually associated with central blastoderm fragments. We could demonstrate by this quail-chicken chimera technique that after the appearance of a pronounced thickening of the chicken upper layer by the early inductive effect of neighboring endophyll, a floor plate forms by insertion of Hensen's node-derived quail cells into the median part of the groove. This favors, at an early stage, the floor plate "allocation" model that postulates a common origin for notochord and median floor plate cells from the vertebrate's secondary major organizer (Hensen's node in this case). A comparison is made with results obtained after transplantation of similar Hensen's nodes in isolated chicken endophyll walls or with previously obtained results after the use of the grafting procedure in the endophyll walls of whole chicken blastoderms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.10436 | DOI Listing |
Polymers (Basel)
December 2024
Department of Automotive Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey.
Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.
Currently, polymer actuators capable of photothermal response are being developed to be more sensitive and repeatable. In this work, a three-layered structured soft film actuator (NA/PET/NI-3) was designed by combining poly(N-isopropylacrylamide) (PNIPAM), poly(N-(2-aminoethyl)-acrylamide) (PANGA) and poly(ethylene glycol-co-terephthalate) (PET) film. Coconut water and PEI were used to synthesize a new kind of carbon nanosheet (PEI-CCS), which, when triggered by near-infrared light, will enable photothermal bending behavior in the micrometer-scale NA/PET/NI-n film, while PET served as the supporting and heat conducting layer.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-Gu, Seoul 06978, Republic of Korea.
Gallium-based liquid metals remain in a liquid state at room temperature and exhibit excellent electrical and thermal conductivities, low viscosity, and low toxicity, making them ideal for creating highly stretchable and conductive composites suitable for flexible electronic devices. Despite these benefits, conventional single-layer liquid metal composites face challenges, such as liquid metal leakage during deformation (e.g.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China.
In this work, we demonstrated the epitaxial growth of a gallium nitride (GaN) buffer structure on 200 mm SOI (silicon-on-insulator) substrates. This epitaxial layer is grown using a reversed stepped superlattice buffer (RSSL), which is composed of two superlattice (SL) layers with different Al component ratios stacked in reverse order. The upper layer, with a higher Al component ratio, introduces tensile stress instead of accumulative compressive stress and reduces the in situ curvature of the wafer, thereby achieving a well-controlled wafer bow ≤ ±50 µm for a 3.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.
The proliferation of flexible pressure sensors has generated new demands for high-sensitivity and low-cost sensors. Here, we propose an elegant strategy to address this challenge by taking a ridge-mimicking, gradient-varying, spatially ordered microstructure as the sensing layer, with laser processing and interdigitated electrodes as the upper and lower electrode layers. Simultaneously, the entire structure is encapsulated with polyimide (PI) tape for protection, and the fabrication process is relatively feasible, facilitating easy scaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!