Conditionally replicating adenoviruses are a promising new modality for the treatment of cancer. However, early clinical trials demonstrate that the efficacy of current vectors is limited. Interestingly, DNA replication and production of viral particles do not always correlate with virus-mediated cell lysis and virus release depending on the vector utilized for infection. However, we have previously reported that nuclear accumulation of the human transcription factor YB-1 by regulating the adenoviral E2 late promoter facilitates viral DNA replication of E1-deleted adenovirus vectors which are widely used for cancer gene therapy. Here we report the promotion of virus-mediated cell killing as a new function of the human transcription factor YB-1. In contrast to the E1A-deleted vector dl312 the first-generation adenovirus vector AdYB-1, which overexpresses YB-1 under cytomegalovirus promoter control, led to necrosis-like cell death, virus production, and viral release after infection of A549 and U2OS tumor cell lines. Our data suggest that the integration of YB-1 in oncolytic adenoviruses is a promising strategy for developing oncolytic vectors with enhanced potency against different malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440461PMC
http://dx.doi.org/10.1128/JVI.80.8.3904-3911.2006DOI Listing

Publication Analysis

Top Keywords

adenovirus vector
8
vector adyb-1
8
adenoviruses promising
8
dna replication
8
production viral
8
virus-mediated cell
8
human transcription
8
transcription factor
8
factor yb-1
8
vector
5

Similar Publications

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

Temporally and Spatially Controlled Age-Related Prostate Cancer Model in Mice.

Bio Protoc

January 2025

Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA.

The initiation and progression of prostate cancer (PCa) are associated with aging. In the history of age-related PCa research, mice have become a more popular animal model option than any other species due to their short lifespan and rapid reproduction. However, PCa in mice is usually induced at a relatively young age, while it spontaneously develops in humans at an older age.

View Article and Find Full Text PDF

Gene therapy in polycystic kidney disease: A promising future.

J Transl Int Med

December 2024

Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China.

Polycystic kidney disease (PKD) is a genetic disorder marked by numerous cysts in the kidneys, progressively impairing renal function. It is classified into autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), with ADPKD being more common. Current treatments mainly focus on symptom relief and slowing disease progression, without offering a cure.

View Article and Find Full Text PDF

Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates adrenomedullin's (ADM) role in protecting estrogen production in Leydig cells by targeting the TGF-β1/Smads signaling pathway.
  • Treatment with ADM via recombinant adenovirus (Ad-ADM) in Leydig cells improved cell viability and hormone production in the presence of lipopolysaccharide (LPS), a compound that can induce cellular stress.
  • Results indicated that Ad-ADM not only maintained testosterone production and aromatase activity but also reduced the harmful effects of TGF-β1 and Smads, suggesting that ADM supports the overall hormone balance in Leydig cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!