The effect of the feeding period on larval development was investigated in European sea bass larvae by considering the expression level of some genes involved in morphogenesis. Larvae were fed a control diet except during three different periods (period A: from 8 to 13 d post-hatching (dph); period B: from 13 to 18 dph; period C: from 18 to 23 dph) with two compound diets containing high levels of vitamin A or PUFA. European sea bass morphogenesis was affected by these two dietary nutrients during the early stages of development. The genes involved in morphogenesis could be modulated between 8 and 13 dph, and our results indicated that retinoids and fatty acids influenced two different molecular pathways that in turn implicated two different gene cascades, resulting in two different kinds of malformation. Hypervitaminosis A delayed development, reducing the number of vertebral segments and disturbing bone formation in the cephalic region. These malformations were correlated to an upregulation of retinoic acid receptor gamma, retinoid X receptor (RXR) alpha and bone morphogenetic protein (BMP)4. An excess of PUFA accelerated the osteoblast differentiation process through the upregulation of RXRalpha and BMP4, leading to a supernumerary vertebra. These results suggest that the composition of diets devoted to marine fish larvae has a particularly determining effect before 13 dph on the subsequent development of larvae and juvenile fish.

Download full-text PDF

Source
http://dx.doi.org/10.1079/bjn20051668DOI Listing

Publication Analysis

Top Keywords

european sea
12
sea bass
12
high levels
8
levels vitamin
8
fatty acids
8
genes involved
8
involved morphogenesis
8
dph period
8
period dph
8
dph
5

Similar Publications

With rising concerns about antimicrobial resistance, the identification of new lead compounds to target multidrug-resistant bacteria is essential. This study employed a fast miniaturized screening to simultaneously cultivate and evaluate about 300 marine strains for biosurfactant and antibacterial activities, leading to the selection of the deep-sea BCP32. The integration of tandem mass spectrometry molecular networking and bioassay-guided fractionation unveiled this strain as a prolific factory of surfactins and nobilamides.

View Article and Find Full Text PDF

Wild or Reared? Jellyfish as a Potential Biofactory.

Mar Drugs

January 2025

Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, (CNR-ISPA)-Lecce, Via Monteroni, 73100 Lecce, Italy.

The zooxanthellate jellyfish (Forsskål, 1775), a Lessepsian species increasingly common in the western and central Mediterranean Sea, was investigated here to assess its potential as a source of bioactive compounds from medusa specimens both collected in the wild (the harbor of Palermo, NW Sicily) and reared under laboratory-controlled conditions. A standardized extraction protocol was used to analyze the biochemical composition of the two sampled populations in terms of protein, lipid, and pigment contents, as well as for their relative concentrations of dinoflagellate symbionts. The total extracts and their fractions were also biochemically characterized and analyzed for their in vitro antioxidant activity to quantify differences in functional compounds between wild and reared jellyfish.

View Article and Find Full Text PDF

How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation.

Mar Drugs

December 2024

CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.

This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges.

View Article and Find Full Text PDF

Marine mucilage disasters, primarily caused by global warming and marine pollution, threaten food security and the sustainability of marine food resources. This study assessed the microbial risks to public health in common sole, deep-water rose shrimp, European anchovy, Atlantic horse mackerel and Mediterranean mussel following the mucilage disaster in the Sea of Marmara in 2021. The total viable count, total Enterobacteriaceae count and the presence of Escherichia coli O157:H7, Salmonella spp.

View Article and Find Full Text PDF

This study examines how southern wintering areas may contribute to organochlorine (OCs) loads in arctic seabirds during breeding. Light-sensitive geolocators (GLS loggers) were deployed on Arctic skuas (Stercorarius parasiticus) in one high arctic and two subarctic colonies. Hexcahlorobenzene (HCB), Chlordanes, Mirex, p, p'-dichlorodiphenyldichloro- ethylene (p, p'-DDE), and Polychlorinated biphenyls (PCBs) were measured in the blood of breeding adults at the nest (58 individuals, a total of 128 samples) in northern Norway and Svalbard between 2009 and 2015.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!