Formaldehyde treated albumin (F-HSA) was found to consist of a monomeric and a polymeric fraction. Both fractions were primarily endocytosed by rat liver sinusoidal cells. However, immunohistochemical staining of endocytosed material showed that the relative contribution of the endothelial and Kupffer cells in uptake of the monomer and the polymer differed significantly, with the monomer mainly having an endothelial cell- and the polymer predominantly having a Kupffer cell pattern of distribution. To directly confirm these heterogeneous patterns, we injected in vivo the 125I-labeled F-HSA fractions and isolated the endothelial and Kupffer cells by centrifugal elutriation. 73.7% of the monomeric F-HSA was found in endothelial cells and only 14.9% was found in Kupffer cells. In contrast, the polymeric F-HSA (1500 kD) was mainly endocytosed by Kupffer cells (71%), whereas the endothelial cells contributed only for 24% in hepatic uptake. In vivo studies and isolated perfused rat liver experiments showed that endocytosis of both monomer and polymer was inhibited by co-administration of polyinosinic acid, a well known inhibitor for scavenger receptors, indicating that these receptors on endothelial and Kupffer cells are mainly involved in this uptake process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(05)81249-5 | DOI Listing |
While key for pathogen immobilization, neutrophil extracellular traps (NETs) often cause severe bystander cell/tissue damage. This was hypothesized to depend on their prolonged presence in the vasculature, leading to cytotoxicity. Imaging of NETs (histones, neutrophil elastase, extracellular DNA) with intravital microscopy in blood vessels of mouse livers in a pathogen-replicative-free environment (endotoxemia) led to detection of NET proteins attached to the endothelium for months despite the early disappearance of extracellular DNA.
View Article and Find Full Text PDFAnn Hepatol
January 2025
Department of Gastroenterology, Xinhua Hospital of zhejiang Province: The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD), now recognized as metabolic dysfunction-associated steatotic liver disease (MASLD), represents a significant and escalating global health challenge. Its prevalence is intricately linked to obesity, insulin resistance, and other components of the metabolic syndrome. As our comprehension of MASLD deepens, it has become evident that this condition extends beyond the liver, embodying a complex, multi-systemic disease with hepatic manifestations that mirror the broader metabolic landscape.
View Article and Find Full Text PDFJ Hepatol
January 2025
Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, United Kingdom. Electronic address:
J Appl Toxicol
January 2025
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
Sulcardine sulfate (Sul) is a novel antiarrhythmic agent blocking multiple channels and exhibits unique pharmacological properties such as lower APD-dependent prolongation and reduced arrhythmia risk. Sul is currently in Phase III clinical trials, yet studies on its long-term toxicological profile and potential target organs remain unexplored. This study investigated the related toxicity of Sul in Sprague Dawley (SD) rats through repeated oral administration for 26 weeks, followed by a 4-week recovery period.
View Article and Find Full Text PDFJ Transl Med
January 2025
The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China.
Chronic liver diseases are highly linked with mitochondrial dysfunction and macrophage infiltration. Mallory-Denk bodies (MDBs) are protein aggregates associated with hepatic inflammation, and MDBs pathogenesis could be induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Here, we investigate the macrophage heterogeneity and the role of macrophage during MDBs pathogenesis on DDC-induced MDBs mouse model by single-nucleus RNA sequencing (snRNA-seq).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!