Human and rat erythrocytes were fractionated by counter-current distribution in charge-sensitive dextran/poly(ethylene glycol) two-phase systems. The specific activities of the key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase) declined along the distribution profiles, although the relative positions of the activity profiles were reversed in the two species. These enzymes maintained their normal response to specific regulatory effectors in all cell fractions. No variations were observed for phosphoglycerate kinase and bisphosphoglycerate mutase activities. Some correlations between enzyme activities (pyruvate kinase/hexokinase, pyruvate kinase/phosphofructokinase, pyruvate kinase/pyruvate kinase plus phosphoglycerate kinase, pyruvate kinase/bisphosphoglycerate mutase and phosphoglycerate kinase/bisphosphoglycerate mutase ratios) were studied in whole erythrocyte populations as well as in cell fractions. These results strongly support the fractionation of human erythrocytes according to cell age, as occurs with rat erythrocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151571 | PMC |
http://dx.doi.org/10.1042/bj2790237 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!