AI Article Synopsis

  • The hSWI/SNF chromatin remodeling complex modifies chromatin structure to control how easily transcription factors can access DNA, using ATP in the process.
  • Recent findings indicate that the serine/threonine kinase Akt interacts with components of the hSWI/SNF complex, specifically INI1, BAF155, and BAF170, in HeLa cells after Akt activation.
  • BAF155 is likely a target for phosphorylation by Akt, as indicated by experiments showing direct interactions between Akt and hSWI/SNF members, and suggests that Akt signaling could influence the function of the hSWI/SNF complex.

Article Abstract

In an adenosine triphosphate (ATP)-dependent process, the hSWI/SNF chromatin remodeling complex functions to alter chromatin structure, thereby regulating transcription factor access to DNA. In addition to interactions with transcription factors and recognition of acetylated histone residues, the chromatin remodeling activity of hSWI/SNF has also been shown to respond to a variety of cell signaling pathways. Our results demonstrate a novel interaction between the serine/threonine kinase Akt and members of the hSWI/SNF chromatin remodeling complex. Activation of Akt in HeLa cells resulted in its association with hSWI/SNF subunits: INI1, BAF155 and BAF170, as well as actin. BAF155 became preferentially recognized by an antibody that detects phosphorylated Akt substrates upon activation of Akt, suggesting that BAF155 may be an in vivo target for phosphorylation by Akt. Glutathione-S-transferase (GST) pulldown experiments demonstrated that INI1 and BAF155 were both capable of directly interacting with Akt. Finally, in vitro kinase assays provided additional evidence that BAF155 and potentially INI1 are substrates for Akt phosphorylation. These data provide the first evidence that Akt signaling may modulate function of the hSWI/SNF complex.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1209496DOI Listing

Publication Analysis

Top Keywords

chromatin remodeling
16
hswi/snf chromatin
12
remodeling complex
12
members hswi/snf
8
akt
8
activation akt
8
ini1 baf155
8
chromatin
5
hswi/snf
5
baf155
5

Similar Publications

Research on the function of epigenetic regulation in the inflammation of non-alcoholic fatty liver disease.

Life Med

August 2024

Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.

View Article and Find Full Text PDF

NKAP: a new m6A RNA binding protein predicts prognosis and immunotherapy response in head and neck squamous cell carcinoma.

J Stomatol Oral Maxillofac Surg

January 2025

Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.

Objective: This study aimed to investigate whether NKAP (nuclear factor κB activating protein) serves as a prognostic marker and predictive biomarker for immunotherapy response in head and neck squamous cell carcinoma (HNSCC).

Methods: A retrospective cohort study combined with in vitro analyses was conducted. NKAP mRNA expression levels were assessed in 520 HNSCC tumor tissues and 44 normal tissues from the TCGA dataset and validated in a clinical cohort (n=32).

View Article and Find Full Text PDF

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF

Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!