The expression of Smad interacting protein-1 (SIP1; ZEB2) and the de novo expression of vimentin are frequently involved in epithelial-to-mesenchymal transitions (EMTs) under both normal and pathological conditions. In the present study, we investigated the potential role of SIP1 in the regulation of vimentin during the EMT associated with breast tumor cell migration and invasion. Examining several breast tumor cell lines displaying various degrees of invasiveness, we found SIP1 and vimentin expression only in invasive cell lines. Also, using a model of cell migration with human mammary MCF10A cells, we showed that SIP1 is induced specifically in vimentin-positive migratory cells. Furthermore, transfection of SIP1 cDNA in MCF10A cells increased their vimentin expression both at the mRNA and protein levels and enhanced their migratory abilities in Boyden Chamber assays. Inversely, inhibition of SIP1 expression by RNAi strategies in BT-549 cells and MCF10A cells decreased vimentin expression. We also showed that SIP1 transfection did not activate the TOP-FLASH reporter system, suggesting that the beta-catenin/TCF pathway is not implicated in the regulation of vimentin by SIP1. Our results therefore implicate SIP1 in the regulation of vimentin observed in the EMT associated with breast tumor cell migration, a pathway that may contribute to the metastatic progression of breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1209511 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:
In previous reports, we highlighted the significant involvement of SMYD3, a histone methyltransferase (HMT), in various aspects of cancer progression, including cell adhesion, migration, and invasion. In this study, we delved deeper into understanding the relationship between SMYD3 and epithelial-mesenchymal transition (EMT) both in cell lines and clinical samples. Our investigation uncovered a notable correlation between heightened SMYD3 expression and the presence of EMT markers in human breast cancer tissues.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan.
The molecular link between stress and carcinogenesis and the positive outcomes of stress intervention in cancer therapy have recently been well documented. Cancer stem cells (CSCs) facilitate cancer malignancy, drug resistance, and relapse and, hence, have emerged as a new therapeutic target. Here, we aimed to investigate the effect of three previously described antistress compounds (triethylene glycol, TEG; Withanone, Wi-N, and Withaferin A, Wi-A) on the stemness and differentiation characteristics of cancer cells.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Stomatology, The Fifth People's Hospital of Qinghai Province & Qinghai Cancer Hospital, Xining 810001, China.
Objective: To investigate the effects of LncRNA SNHG20 on epithelial mesenchymal transition (EMT) and microtubule formation in human oral squamous cell carcinoma (OSCC) cells through targeted regulation of the miR-520c-3p/ pathway.
Methods: After real-time fluorescence quantitative detection of LncRNA SNHG20, miR-520c-3p, mRNA expression levels in OSCC tissues and cells, dual luciferase reporter assay was used to detect the relationship between the three. OSCC cells were randomly separated into control group, sh-NC group, sh-SNHG20 group, sh-SNHG20+anti NC group, and sh-SNHG20+anti miR-520c-3p group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!