The biosynthetic pathway of L-tartaric acid, the form most commonly encountered in nature, and its catabolic ties to vitamin C, remain a challenge to plant scientists. Vitamin C and L-tartaric acid are plant-derived metabolites with intrinsic human value. In contrast to most fruits during development, grapes accumulate L-tartaric acid, which remains within the berry throughout ripening. Berry taste and the organoleptic properties and aging potential of wines are intimately linked to levels of L-tartaric acid present in the fruit, and those added during vinification. Elucidation of the reactions relating L-tartaric acid to vitamin C catabolism in the Vitaceae showed that they proceed via the oxidation of L-idonic acid, the proposed rate-limiting step in the pathway. Here we report the use of transcript and metabolite profiling to identify candidate cDNAs from genes expressed at developmental times and in tissues appropriate for L-tartaric acid biosynthesis in grape berries. Enzymological analyses of one candidate confirmed its activity in the proposed rate-limiting step of the direct pathway from vitamin C to tartaric acid in higher plants. Surveying organic acid content in Vitis and related genera, we have identified a non-tartrate-forming species in which this gene is deleted. This species accumulates in excess of three times the levels of vitamin C than comparably ripe berries of tartrate-accumulating species, suggesting that modulation of tartaric acid biosynthesis may provide a rational basis for the production of grapes rich in vitamin C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459401 | PMC |
http://dx.doi.org/10.1073/pnas.0510864103 | DOI Listing |
Carbohydr Polym
March 2025
Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina. Electronic address:
In this study, corn starch esters were obtained by a novel methodology using oleic acid as an esterifying agent and L(+)-tartaric acid as both catalyst and esterifying agent. The degree of substitution (DS) was determined along the reaction time to control the level of substitution achieved (up to 0.33), while all the other reaction parameters were maintained constant.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Science and Technology, Nottingham Trent University, Nottingham, Clifton Lane NG11 8NS, U.K.
We report the synthesis of three radical-cation salts of BEDT-TTF from racemic tris(oxalato)ferrate by electrocrystallization in the presence of chiral molecules. In the presence of enantiopure l-(+)-tartaric acid, we observe spontaneous resolution of the labile tris(oxalato)ferrate anion to produce the chiral radical-cation salt α-(BEDT-TTF)[Δ-Fe(CO)].[l-(+)-tartaric acid] which contains only the Δ enantiomer of Fe(CO).
View Article and Find Full Text PDFFood Chem
February 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Adding specific lactic acid bacteria to yogurt has been known to enhance both its benefits and flavor. However, differences among the strains of the same species present significant challenges. In this study, we constructed a phylogenetic tree of 232 Limosilactobacillus fermentum strains and selected seven strains with distinct evolutionary relationships for yogurt fermentation.
View Article and Find Full Text PDFChemSusChem
November 2024
Department of Chemical Engineering, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden.
In this study L-(+)-tartaric acid was used to extract metals from either pure cathode material (NMC111) or black mass from spent lithium-ion batteries. The leaching efficiencies of Li, Co, Ni, and Mn from NMC111 are >87 % at 70 °C, with an initial solid to liquid ratio of 17, and >72.4±1.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632 014 India
Nitrogen-doped quantum dots (NCQD) were synthesized by solvothermal means using -phenylenediamine and l-tartaric acid. The resultant NCQD produced a high quantum yield (40.3%) and a vivid green fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!