Background: Knee cartilage defects may play an important role in early osteoarthritis, but little is known about their natural history.

Methods: Knee cartilage defect score (range, 0-4), cartilage volume, and bone surface area were determined using T1-weighted fat-saturated magnetic resonance imaging in 325 subjects (mean age, 45 years) at baseline and 2 years later.

Results: Thirty-three percent of the subjects had a worsening (>or=1-point increase) and 37% of the subjects had an improvement (>or=1-point decrease) in cartilage defect score in any knee compartment during 2.3 years. A worsening in cartilage defect score was significantly associated with female sex (odds ratio [OR], 3.09 and 3.64 in the medial and lateral tibiofemoral compartments) and baseline factors, including age (OR, 1.05 per year in the medial tibiofemoral compartment), body mass index (OR, 1.08 in the lateral tibiofemoral compartment), tibiofemoral osteophytes (OR, 6.22 and 6.04 per grade), tibial bone area (OR, 1.24 and 2.07 per square centimeter), and cartilage volume (OR, 2.91 and 1.71 per milliliter in the medial tibiofemoral and patellar compartments). An improvement in cartilage defect score had similar but reversed associations with these factors (except for sex), including a decrease in body mass index (OR, 1.23 in the medial tibiofemoral compartment).

Conclusions: Knee cartilage defects are variable, and changes are associated with female sex, age, and body mass index. Increases are associated with baseline cartilage volume, bone size, and osteophytes, suggesting a role for these in the pathogenesis of cartilage defects. Interventions such as weight loss may improve knee cartilage defects.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archinte.166.6.651DOI Listing

Publication Analysis

Top Keywords

knee cartilage
20
cartilage defects
20
cartilage defect
16
defect score
16
cartilage
12
cartilage volume
12
medial tibiofemoral
12
body mass
12
volume bone
8
associated female
8

Similar Publications

Background: Osteochondral allograft transplantation (OCA) is well established as a viable chondral restoration procedure for the treatment of symptomatic, focal chondral defects of the knee. The efficacy of secondary OCA in the setting of failed index cartilage repair or restoration is poorly understood.

Purpose: To evaluate radiographic and clinical outcomes, failures, and reoperations after OCA after failed index cartilage repair or restoration of the knee.

View Article and Find Full Text PDF

Background And Purpose:  In contemporary medial unicompartmental knee arthroplasty (mUKA), non-lateral patellofemoral osteoarthritis (PFOA) is not considered a contraindication. However, we still lack knowledge on the association of PFOA severity on patient reported outcome measures (PROMs) after mUKA. We aimed to examine the association between PFOA severity and PROM-score changes after mUKA.

View Article and Find Full Text PDF

Subject-specific finite element models of knee joint contact mechanics are used in assessment of interventions and disease states. Cartilage thickness distribution is one factor influencing the distribution of pressure. Precision of cartilage geometry capture varies between imaging protocols.

View Article and Find Full Text PDF

Anterior cruciate ligament reconstruction with quadriceps tendon autograft is a reliable graft option that has recently increased in use. Varying harvesting and graft preparation techniques available and improved technology and implant design continue to make quadricep tendon preparation more efficient and reproducible. In this Technical Note, we describe our preferred technique for all-soft tissue quadriceps tendon autograft preparation after harvest for anterior cruciate ligament reconstruction.

View Article and Find Full Text PDF

Dynamic biomechanical effects of medial meniscus tears on the knee joint: a finite element analysis.

J Orthop Surg Res

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.

Background: Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking.

Methods: Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!