Duchenne muscular dystrophy and Becker muscular dystrophy are X-linked recessive diseases of muscle degeneration caused by mutations in the dystrophin gene. More than half of our local Asian patients have point mutations that cannot be detected by conventional multiplex polymerase chain reaction deletion screening. This study aimed to develop mutational screening and carrier detection for Duchenne and Becker muscular dystrophy using protein truncation analysis from Epstein-Barr virus-transformed lymphocyte cell lines. Messenger ribonucleic acid was extracted from fresh lymphocytes and Epstein-Barr virus-transformed lymphocyte cell lines of 14 patients. Reverse transcriptase polymerase chain reaction was performed in 11 overlapping segments, followed by in vitro protein translation and truncation analysis. DNA sequencing was carried out for the corresponding complementary DNA regions, which showed aberrant truncated protein products. Carrier studies using this method were also performed for two families. Half of the patients had frame-shifting deletions, and the remaining seven patients showed point mutations, of which four were novel. These mutations were detected in messenger ribonucleic acid extracted from both fresh lymphocytes and Epstein-Barr virus-transformed lymphocyte cell lines. Carrier status was confirmed in one family and was found to be negative in the other family studied. Protein truncation analysis is an efficient method of screening truncating point mutations from immortalized lymphocyte cell lines from patients. This approach not only serves to prove the pathogenicity of both deletion- and nondeletion-type mutations; it is also effective for carrier detection. The use of such cell lines obviates the need for repeated blood and muscle sampling in patients and offers a perpetual source of messenger ribonucleic acid that can be used long after the patient's demise.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08830738060210021101DOI Listing

Publication Analysis

Top Keywords

cell lines
24
lymphocyte cell
16
muscular dystrophy
12
point mutations
12
truncation analysis
12
epstein-barr virus-transformed
12
virus-transformed lymphocyte
12
messenger ribonucleic
12
ribonucleic acid
12
dystrophin gene
8

Similar Publications

Progress of human brain in vitro models stands as a keystone in neurological and psychiatric research, addressing the limitations posed by species-specific differences in animal models. The generation of human neurons from induced pluripotent stem cells (iPSCs) using transcription factor reprogramming protocols has been shown to reduce heterogeneity and improve consistency across different stem cell lines. Despite notable advancements, the current protocols still exhibit several shortcomings.

View Article and Find Full Text PDF

Exopolysaccharides (EPS) produced by lactic acid bacteria with immunomodulatory potential are promising natural food additives. This study employs small-scale, 250 mL bioreactors combined with a central composite design to optimise two important bioprocess parameters, namely temperature and airflow, to achieve high yields of biomass and EPS from Lacticaseibacillus rhamnosus LRH30 (L. rhamnosus LRH30).

View Article and Find Full Text PDF

The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition.

View Article and Find Full Text PDF

Ebastine-mediated destabilization of E3 ligase MKRN1 protects against metabolic dysfunction-associated steatohepatitis.

Cell Mol Life Sci

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer.

View Article and Find Full Text PDF

Purpose: Following the initial reports demonstrating the feasibility of immunoPET imaging of simian immunodeficiency virus (SIV) using gp120-targeting monoclonal antibodies in non-human primates, replication efforts of the imaging system in human immunodeficiency virus (HIV)-infected individuals have yielded conflicting results. Herein, we used two anti-gp120 antibodies, 7D3 and ITS103.01LS-F(ab'), to interrogate the reproducibility of gp120-targeting probes for immunoPET imaging of SIV in rhesus macaques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!