Coexisting muscular dystrophies and epilepsy in children.

J Child Neurol

Department of Pediatrics, The Ohio State University, Columbus, OH, USA.

Published: February 2006

Muscular dystrophies are composed of a variety of genetic muscle disorders linked to different chromosomes and loci and associated with different gene mutations that lead to progressive muscle atrophy and weakness. Fukuyama congenital muscular dystrophy is frequently associated with partial and generalized epilepsy and congenital brain anomalies, including cobblestone complex and other neuronal migration defects. We report generalized convulsive epilepsy in a boy with normal brain magnetic resonance imaging and Duchenne muscular dystrophy with deletion of dystrophin gene, and we report absence epilepsy with normal brain magnetic resonance imaging in another boy with limb girdle muscular dystrophy with partial calpain deficiency. We, therefore, review coexisting muscular dystrophies and epilepsy in children. In addition to Fukuyama congenital muscular dystrophy, partial or generalized epilepsy has also been reported in the following types of muscular dystrophies, including Duchenne/Becker dystrophy, facioscapulohumeral dystrophy, congenital muscular dystrophy with partial and complete deficiency of laminin alpha2 (merosin) chain, and limb girdle muscular dystrophy with partial calpain deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08830738060210021601DOI Listing

Publication Analysis

Top Keywords

muscular dystrophy
24
muscular dystrophies
16
dystrophy partial
16
congenital muscular
12
muscular
9
coexisting muscular
8
dystrophies epilepsy
8
epilepsy children
8
fukuyama congenital
8
dystrophy
8

Similar Publications

Bone measurements interact with phenotypic measures in canine Duchenne muscular dystrophy.

Front Vet Sci

January 2025

Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.

Duchenne muscular dystrophy (DMD) is an X-linked muscle disease with weakness, loss of ambulation, and premature death. DMD patients have reduced bone health, including decreased femur length (FL), density, and fractures. The mouse model has paradoxically greater FL, density, and strength, positively correlating with muscle mass.

View Article and Find Full Text PDF

Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating muscle disease caused by de-repression of the toxic gene in skeletal muscle. FSHD patients may benefit from inhibition therapies, and although several experimental strategies to reduce levels in skeletal muscle are being developed, no approved disease modifying therapies currently exist. We developed a CRISPR-Cas13b system that cleaves mRNA and reduces DUX4 protein level, protects cells from DUX4-mediated death, and reduces FSHD-associated biomarkers .

View Article and Find Full Text PDF

Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!