Photochemical internalization (PCI) is a new technology, where certain photosensitizing substances (photosensitizers) are used to improve the utilization of macromolecules for cancer therapy, in a site-specific manner. Degradation of macromolecules in endocytic vesicles after uptake by endocytosis is a major intracellular barrier for the therapeutic application of molecules having intracellular targets of action. PCI is based on the light activation of photosensitizers specifically located in the membrane of endocytic vesicles inducing the rupture of this membrane upon illumination. Thereby endocytosed molecules can be released to reach their target of action before being degraded in lysosomes. This has been shown to enhance the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), immunotoxins, gene-encoding plasmids, adenovirus, peptidenucleic acids, and the chemotherapeuticum bleomycin. In several cases up to a 100-fold increase in biological activity has been observed. This article reviews the background and present status of PCI.

Download full-text PDF

Source
http://dx.doi.org/10.1615/jenvironpatholtoxicoloncol.v25.i1-2.330DOI Listing

Publication Analysis

Top Keywords

photochemical internalization
8
internalization pci
8
light activation
8
endocytic vesicles
8
biological activity
8
pci
4
pci modality
4
modality light
4
activation endocytosed
4
endocytosed therapeuticals
4

Similar Publications

In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates two new Ru(II) complexes containing a phosphorus-based ligand (PTA) and analyzes their photophysical, photochemical properties, and excited state dynamics.
  • Excitation at 470 nm does not trigger ligand release or noticeable luminescence at room temperature, but luminescence is detected at 77 K when excited near the MLCT bands.
  • The complexes show non-cytotoxic behavior in cancer cells, linked to their stability and failure to produce reactive oxygen species, including findings from MTT assays and ICP-MS analyses.
View Article and Find Full Text PDF

Background/objectives: Although the use of radiation-sensitizing agents has been shown to enhance the effect of radiation on tumor cells, the blood-brain barrier (BBB) impedes these agents from reaching brain tumor sites when provided systemically. Localized methods of sensitizer delivery, utilizing hydrogels, have the potential to bypass the blood-brain barrier. This study examined the ability of photochemical internalization (PCI) of hydrogel-released bleomycin to enhance the growth-inhibiting effects of radiation on multi-cell glioma spheroids in vitro.

View Article and Find Full Text PDF

A photoactive analogue of cisplatin was synthesized with two arylazopyrazole ligands, able to undergo -/- photoisomerizations. The photoisomer showed a dark half-life of 9 days. The cytotoxicities of both photoisomers of the complex were determined in several cancer and normal cell lines and compared to that of cisplatin.

View Article and Find Full Text PDF

The DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn () or a hooked bdppz () benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!