Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we propose a new pruning algorithm to obtain the optimal number of hidden units of a single layer of a fully connected neural network (NN). The technique relies on a global sensitivity analysis of model output. The relevance of the hidden nodes is determined by analysing the Fourier decomposition of the variance of the model output. Each hidden unit is assigned a ratio (the fraction of variance which the unit accounts for) that gives their ranking. This quantitative information therefore leads to a suggestion of the most favorable units to eliminate. Experimental results suggest that the method can be seen as an effective tool available to the user in controlling the complexity in NNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNN.2006.871707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!