The selectable marker system, which utilizes the pmi gene encoding for phosphomannose-isomerase that converts mannose-6-phosphate to fructose-6-phosphate, was adapted for Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.). Only transformed cells were capable of utilizing mannose as a carbon source. The highest transformation frequency of 23% was obtained with 10 g/l mannose and 10 g/l sucrose in the medium. Molecular, genetic analysis, and PMI activity assay showed that the regenerated shoots contained the pmi gene and the gene was transmitted to the progeny in a Mendelian fashion. The results indicated that the mannose selection system, which is devoid of the disadvantages of antibiotic or herbicide selection, could be used for cucumber Agrobacterium-mediated transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-006-0156-zDOI Listing

Publication Analysis

Top Keywords

mannose selection
8
selection system
8
pmi gene
8
agrobacterium-mediated transformation
8
mannose
4
system cucumber
4
transformation
4
cucumber transformation
4
transformation selectable
4
selectable marker
4

Similar Publications

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Transcriptome Reveals the Differential Regulation of Sugar Metabolism to Saline-Alkali Stress in Different Resistant Oats.

Genes (Basel)

January 2025

Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing 163712, China.

Background: Saline-alkali stress is a major factor limiting the growth of oats. Sugar is the primary carbon and energy source in plants which regulates plant development and growth by regulating enzyme activity and gene expression. Sucrose, glucose, and fructose are ubiquitous plant-soluble sugars that act as signalling molecules in the transcriptional regulation of various metabolic and defence-related genes.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

Compared to conventional nanocarrier-based drug delivery technology, small-molecule-assembled nanomaterials provide various advantages, including higher drug loading efficiency, lower excipient-related toxicity, and a simpler formulation process. Our research constructed a mannonse-modified small-molecule-assembled nanodrug for synergistic photodynamic/chemotherapy against A549 cancer cells. The hydrophobic hypoxic-activated agent tirapazamine (TPZ) and a hydrophilic fluorescence probe Cyanine 3 (Cy3) constitute this amphiphilic prodrug via a glutathione (GSH)-responsive linkage, which could self-assemble into stable nanoparticles (NPs) and encapsulate a newly synthesized photosensitizer (SeBDP).

View Article and Find Full Text PDF

Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!