Little is known about the presence and function of two-pore domain K(+) (K(2P)) channels in vascular smooth muscle cells (VSMCs). Five members of the K(2P) channel family are known to be directly activated by arachidonic acid (AA). The purpose of this study was to determine 1) whether AA-sensitive K(2P) channels are expressed in cerebral VSMCs and 2) whether AA dilates the rat middle cerebral artery (MCA) by increasing K+ currents in VSMCs via an atypical K+ channel. RT-PCR revealed message for the following AA-sensitive K(2P) channels in rat MCA: tandem of P domains in weak inward rectifier K+ (TWIK-2), TWIK-related K+ (TREK-1 and TREK-2), TWIK-related AA-stimulated K+ (TRAAK), and TWIK-related halothane-inhibited K+ (THIK-1) channels. However, in isolated VSMCs, only message for TWIK-2 was found. Western blotting showed that TWIK-2 is present in MCA, and immunohistochemistry further demonstrated its presence in VSMCs. AA (10-100 microM) dilated MCAs through an endothelium-independent mechanism. AA-induced dilation was not affected by inhibition of cyclooxygenase, epoxygenase, or lipoxygenase or inhibition of classical K+ channels with 10 mM TEA, 3 mM 4-aminopyridine, 10 microM glibenclamide, or 100 microM Ba2+. AA-induced dilations were blocked by 50 mM K+, indicating involvement of a K+ channel. AA (10 microM) increased whole cell K+ currents in dispersed cerebral VSMCs. AA-induced currents were not affected by inhibitors of the AA metabolic pathways or blockade of classical K+ channels. We conclude that AA dilates the rat MCA and increases K+ currents in VSMCs via an atypical K+ channel that is likely a member of the K(2P) channel family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01377.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!