Expression of the glycoprotein MII2 antigen originally identified in Zajdela ascites hepatoma cells was investigated in several normal rat tissues and in more or less differentiated tumours using biochemical and immunological approaches. SDS-polyacrylamide gel electrophoresis followed by fluorography or immunoblotting with an antiserum raised against the purified MII2 antigen revealed that this antigen was absent from normal liver cells. ELISA assays, indirect immunofluorescence and immunoprecipitation experiments using the same antiserum showed that this glycoprotein was not expressed in various normal tissues such as liver, spleen, lung, pancreas, intestine and stomach, but it was unexpectedly detected in kidney and thymic tissues. However, the molecular weight of the antigens immunoprecipitated from kidney and thymus was lower than the one of MII2 (Mr of 60,000 versus 110,000-160,000 for purified MII2). No staining was observed in embryonic rat liver at 10 and 20 days of development. Moreover, this antigen was present on the surface of Morris hepatoma 7777, another rapidly proliferating and poorly differentiated hepatocellular carcinoma. In contrast, this antigen was not detected on the surface of in vitro Zajdela hepatoma cells (ZHC) or of partially differentiated hepatomas (Faza) which have recovered some hepatic functions. In addition, the MII2 antigen was found on the human non-hepatic HT-29 tumour cell line, under its undifferentiated form (HT-29 G+ subline). The possible relationships between the expression of this antigen and both the malignant transformation process and the differentiation process are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3083.1991.tb01564.x | DOI Listing |
Front Immunol
January 2025
Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.
View Article and Find Full Text PDFFront Immunol
January 2025
National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.
View Article and Find Full Text PDFOncol Lett
March 2025
Guangzhou Center for Disease Control and Prevention, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.
The oncogenic and tumor suppressor roles of lnc-MAPKAPK5-AS1 in multiple cancers suggest its complexity in modulating cancer progression. The expression and promoter methylation level of lnc-MAPKAPK5-AS1 in hepatocellular carcinoma (HCC) was investigated through data mining from The Cancer Genome Atlas and Gene Expression Omnibus and its significance in prognosis and immunity was explored. lnc-MAPKAPK5-AS1 was co-expressed with its protein-coding gene MAPKAPK5 in HCC and exhibited upregulation in HCC tissues as a result of hypomethylation of its promoter region.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Infectious Diseases, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
Background: Hepatocellular carcinoma (HCC) is a significant global health concern, with chronic hepatitis B virus (HBV) infection being a major contributor. Understanding the mechanisms of HBV-associated HCC is crucial to improving the prognosis and developing effective treatments.
Methods: HBV-associated HCC datasets (GSE19665, GSE121248, GSE55092, GSE94660, and TCGA-LIHC) acquired from public databases were mined to identify key driver genes by differentially expressed gene analysis, weighted gene co-expression network analysis (WGCNA), followed by protein-protein interaction network analysis, Lasso-Cox regression analysis, and randomforestSRC algorithm.
iScience
January 2025
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
Increasing evidence suggests that aberrant alternative splicing plays crucial roles in tumorigenesis. However, the function of EZH2 splice variants as well as the mechanism by which EZH2 alternative splicing occurs in hepatocellular carcinoma (HCC) remain elusive. Here, we analyzed both our own and published transcriptomic data, obtaining 19 splice variants of EZH2 in addition to canonical full-length EZH2-A in HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!