The transient receptor potential melastatin-related channel 2 (TRPM2) is a nonselective cation channel, whose prolonged activation by oxidative and nitrative agents leads to cell death. Here, we show that the drug puromycin selectively targets TRPM2-expressing cells, leading to cell death. Our data suggest that the silent information regulator 2 (Sir2 or sirtuin) family of enzymes mediates this susceptibility to cell death. Sirtuins are protein deacetylases that regulate gene expression, apoptosis, metabolism, and aging. These NAD+-dependent enzymes catalyze a reaction in which the acetyl group from substrate is transferred to the ADP-ribose portion of NAD+ to form deacetylated product, nicotinamide, and the metabolite OAADPr, whose functions remain elusive. Using cell-based assays and RNA interference, we show that puromycin-induced cell death is greatly diminished by nicotinamide (a potent sirtuin inhibitor), and by decreased expression of sirtuins SIRT2 and SIRT3. Furthermore, we demonstrate using channel current recordings and binding assays that OAADPr directly binds to the cytoplasmic domain of TRPM2 and activates the TRPM2 channel. ADP-ribose binds TRPM2 with similarly affinity, whereas NAD+ displays almost negligible binding. These studies provide the first evidence for the potential role of sirtuin-generated OAADPr in TRPM2 channel gating.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M513741200DOI Listing

Publication Analysis

Top Keywords

cell death
16
trpm2 channel
8
trpm2
6
channel
6
metabolite sir2
4
sir2 reaction
4
reaction modulates
4
modulates trpm2
4
trpm2 ion
4
ion channel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!