The pathological manifestation of nine hereditary neurodegenerative diseases is the presence within the brain of aggregates of disease-specific proteins that contain polyglutamine tracts longer than a critical length. To improve our understanding of the processes by which polyglutamine-containing proteins misfold and aggregate, we have conducted molecular dynamics simulations of the aggregation of model polyglutamine peptides. This work was accomplished by extending the PRIME model to polyglutamine. PRIME is an off-lattice, unbiased, intermediate-resolution protein model based on an amino acid representation of between three and seven united atoms, depending on the residue being modeled. The effects of hydrophobicity on the system are studied by varying the strength of the hydrophobic interaction from 12.5% to 5% of the hydrogen-bonding interaction strength. In our simulations, we observe the spontaneous formation of aggregates and annular structures that are made up of beta-sheets starting from random configurations of random coils. This result was interesting because tubular protofibrils were recently found in experiments on polyglutamine aggregation and because of Perutz's prediction that polyglutamine would form water-filled nanotubes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1471860 | PMC |
http://dx.doi.org/10.1529/biophysj.105.079269 | DOI Listing |
Methods Cell Biol
January 2025
State University of Minas Gerais, Department of Biomedical Sciences and Health, Passos, MG, Brazil. Electronic address:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFFree Neuropathol
January 2024
Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Biomaterials & Biomedical Technology (BBT), University Medical Centre Groningen (UMCG), Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
Free radicals are believed to play a secondary role in the cell death cascade associated with various diseases. In Huntington's disease (HD), the aggregation of polyglutamine (PolyQ) not only contributes to the disease but also elevates free radical levels. However, measuring free radicals is difficult due to their short lifespan and limited diffusion range.
View Article and Find Full Text PDFMol Aspects Med
February 2025
Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari Del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy. Electronic address:
Protein folding represents a vital process for any living organism. While significant insights have been gained from studying single-domain proteins, our current knowledge on the folding mechanisms of multidomain proteins remains relatively limited, primarily due to their inherent complexity. The principal aim of this review lies in summarizing the emerging view pertaining multi-domain folding, emphasizing their modular nature, which minimizes misfolding and facilitates evolutionary innovation.
View Article and Find Full Text PDFMol Med
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!