We report the expression and purification of alpha-synuclein, a protein implicated in Parkinson's disease, from isotopically (13C, 15N) labeled bacterial growth media, as required for solid-state NMR structural studies. Expression from Escherichia coli (BL21(DE3)) was performed with a protocol optimized for time efficiency and yield. Chemical lysis, crude purification by ammonium sulfate precipitation, and two chromatography steps (hydrophobic interaction and size exclusion) yield 30-35 mg/L of growth medium. Purity is confirmed by gel electrophoresis and mass spectrometry. Furthermore, we demonstrate reproducible fibril growth by control of environmental incubation conditions. Highly resolved multidimensional solid-state NMR spectra indicate microscopic order throughout the majority of the AS fibril structure. The number of signals and intensities of well-resolved residue types (Thr, Ser, Ala, Gly, Val, and Ile) are consistent with a single conformation, which is reproducibly prepared by seeding consecutive preparations. Variations in the fibril growth rates and structural polymorphisms exhibited in the solid-state NMR spectra are minimized by careful control of incubation conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2006.02.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!