Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition.

Biomaterials

Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Published: July 2006

AI Article Synopsis

  • Zirconium oxide thin films were created on silicon wafers using a specialized technique, and their structure was analyzed using various advanced imaging methods like AFM and TEM.
  • The films exhibited bioactivity, demonstrated by the formation of apatite when tested in simulated body fluids, indicating their potential for biomedical applications.
  • Additionally, bone marrow mesenchymal stem cells showed good growth and proliferation on the film surface, suggesting that these ZrO(2) thin films have favorable properties for use in biological environments.

Article Abstract

Zirconium oxide thin films were fabricated on silicon wafers using a filtered cathodic arc system in concert with oxygen plasma. The structure and phase composition of the zirconium oxide thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy (TEM). The bioactivity was assessed by investigating the formation of apatite on the film surface after soaking in simulated body fluids. Bone marrow mesenchymal stem cells (BMMSC) were used to further evaluate the cytocompatibility of the materials. The results indicate that the films are composed of stoichiometric ZrO(2) and the composition is quite uniform throughout the thickness. Bone-like apatite can be formed on the surface of the ZrO(2) thin film in our SBF immersion experiments, suggesting that the surface is bioactive. The outermost layer of the ZrO(2) thin film comprises nano-sized particles that can be identified by AFM images taken on the thin film surface and TEM micrographs obtained from the interface between the ZrO(2) thin film and apatite layer. The nanostructured surface is believed to be the key factor that apatite is induced to precipitate on the surface. Bone marrow mesenchymal stem cells are observed to grow and proliferate in good states on the film surface. Our results show that ZrO(2) thin films fabricated by cathodic arc deposition exhibit favorable bioactivity and cytocompatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.03.007DOI Listing

Publication Analysis

Top Keywords

zro2 thin
16
thin film
16
films fabricated
12
cathodic arc
12
thin films
12
film surface
12
bioactivity cytocompatibility
8
fabricated cathodic
8
arc deposition
8
zirconium oxide
8

Similar Publications

Unconventional Ferroelectric-Ferroelastic Switching Mediated by Non-Polar Phase in Fluorite Oxides.

Adv Mater

January 2025

Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

HfO/ZrO-based ferroelectrics present tremendous potential for next-generation non-volatile memory due to their high scalability and compatibility with silicon technology. Unlike the continuous polar layers in perovskite ferroelectrics, HfO/ZrO-based ferroelectrics are composed of alternating polar layers with oxygen shifts and non-polar spacers, which leads to a distinct ferroelectric switching mechanism. However, directly observing the switching process has been a big challenge due to the polymorph feature of nanoscale fluorites and the difficulty in in situ imaging on light elements.

View Article and Find Full Text PDF

Stress-induced self-assembly of hierarchically twisted stripe arrays.

Sci Bull (Beijing)

December 2024

Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:

Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.

View Article and Find Full Text PDF

Study of methylene blue removal and photocatalytic degradation on zirconia thin films modified with Mn-Anderson polyoxometalates.

Dalton Trans

January 2025

Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.

Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.

View Article and Find Full Text PDF

Multiple Polarization States in Hf ZrO Thin Films by Ferroelectric and Antiferroelectric Coupling.

Adv Mater

December 2024

Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China.

HfO-based multi-bit ferroelectric memory combines non-volatility, speed, and energy efficiency, rendering it a promising technology for massive data storage and processing. However, some challenges remain, notably polarization variation, high operation voltage, and poor endurance performance. Here we show Hf ZrO (x = 0.

View Article and Find Full Text PDF
Article Synopsis
  • Nickel electrodeposition is a common method for creating thin films that can be enhanced by adding elements or particles, resulting in nickel composite coatings.
  • These composite coatings demonstrate improved properties such as corrosion resistance, hardness, and wear resistance compared to plain nickel coatings.
  • The inclusion of particles like AlO, SiC, ZrO, WC, and TiO enhances mechanical strength and decreases grain size in the nickel matrix, offering better protection and performance for various substrates.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!