C. elegans diapause, gonadal outgrowth, and life span are regulated by a lipophilic hormone, which serves as a ligand to the nuclear hormone receptor DAF-12. A key step in hormone production is catalyzed by the CYP450 DAF-9, but the extent of the biosynthetic pathway is unknown. Here, we identify a conserved Rieske-like oxygenase, DAF-36, as a component in hormone metabolism. Mutants display larval developmental and adult aging phenotypes, as well as patterns of epistasis similar to that of daf-9. Larval phenotypes are potently reversed by crude lipid extracts, 7-dehydrocholesterol, and a recently identified DAF-12 sterol ligand, suggesting that DAF-36 works early in the hormone biosynthetic pathway. DAF-36 is expressed primarily within the intestine, a major organ of metabolic and endocrine control, distinct from DAF-9. These results imply that C. elegans hormone production has multiple steps and is distributed, and that it may provide one way that tissues register their current physiological state during organismal commitments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2006.02.008 | DOI Listing |
Viruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China.
Turcz. is a winter annual species of the Asteraceae family, distributed in sandy areas of northern China, and is crucial for wind avoidance and sand fixation. To understand the inter- and intra-annual population dynamics of in its cold desert habitats, we conducted long- and short-term demographic studies to investigate the timing of germination, seedling survival, soil seed bank and seed longevity of natural populations on the fringe of the Tengger Desert.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Landscape Protection and Reclamation, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.
The world's big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental conditions are making it even more difficult for trees to grow and survive.
View Article and Find Full Text PDFNutrients
January 2025
School of Health Management, Southern Medical University, Guangzhou 510515, China.
Background: As the global population ages, there is an increasing prevalence of mild cognitive impairment and dementia. Protecting and preserving cognitive function in older adults has become a critical public health concern.
Methods: This study utilized data from four phases of the Chinese Longitudinal Healthy Longevity Survey conducted from 2008 to 2018, encompassing a total of 2454 participants.
Polymers (Basel)
January 2025
Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary.
This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted by the isolated fungi, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!