Heat shock proteins (Hsps) are ubiquitous molecular chaperones with indispensable roles in assisting protein folding and giving protection from proteotoxic environmental harm. Members of the 70-kDa heat shock protein family have been demonstrated to recognize and bind with distinguished RNA sequences, which function as determinants of eukaryotic mRNA stability. We have earlier identified the molecular domains involved in RNA-binding and characterized in detail the specificity, affinity and some regulatory aspects of this molecular interaction using various deletion mutants and homologues of Hsp70. We have shown that wild type, but not any of the tested truncated mutants of Hsp70, is efficiently taken up by P388 mouse macrophage cells. Here we addressed the question of whether Hsp70 is capable of delivering bound RNA into mammalian cells. Employing fluorescence and confocal microscopy, we demonstrated that full length Hsp70 facilitates the uptake of RNA molecules into the cytoplasm of mammalian cells. We propose that further optimization of this system might enable the development of a valuable tool to deliver RNA molecules, such as siRNA, dsRNA or other regulatory RNA sequences to probe or influence various regulatory processes in eukaryotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellbi.2006.01.001 | DOI Listing |
Pharmaceutics
December 2024
School of Pharmacy, Nantong University, Nantong 226001, China.
Porphyrin's excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials.
View Article and Find Full Text PDFNutrients
December 2024
Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.
Background: Obesity is a risk factor for developing cardiovascular diseases (CVDs) by impairing normal vascular function. Natural products are gaining momentum in the clinical setting due to their high efficacy and low toxicity. extract (CFE) has been shown to control appetite and promote weight loss; however, its effect on vascular function remains poorly understood.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 İstanbul, Türkiye.
The aim of this study was to obtain data on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) profiles of () isolates resulting from acquired immune memory in addition to their technological starter properties for the selection of potential starter cultures from local yogurt samples. A total of 24 isolates were collected from six local yogurt samples including Afyon/Dinar, Uşak, Konya/Karapınar, and Tokat provinces of Türkiye. Strain-specific CRISPR I-II-III and IV primers were used to determine the CRISPR profiles of the isolates.
View Article and Find Full Text PDFMolecules
December 2024
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
Breast cancer remains one of the most prevalent and lethal malignancies in women, particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant challenge.
View Article and Find Full Text PDFMolecules
December 2024
Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
Antimicrobial peptides (AMPs) constitute a large and diverse group of molecules with antibacterial, antifungal, antiviral, antiprotozoan, and anticancer activity. In animals, they are key components of innate immunity involved in fighting against various pathogens. Proline-rich (Pr) AMPs are characterized by a high content of proline (and arginine) residues that can be organized into Pro-Arg-Pro motifs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!