To determine whether glutamine affects glutathione (GSH, gamma-glutamyl-cysteinyl-glycine) metabolism, seven healthy beagle dogs received 6-h infusions of [(15)N]glutamate and [(13)C]leucine after a 3-day fast. Isotope infusions were performed during oral feeding with an elemental regimen, supplemented with either l-glutamine or an isonitrogenous amino acid mixture, on two separate days and in randomized order. Timed blood samples were obtained, and a surgical duodenal biopsy was performed after 6 h of isotope infusion. GSH fractional synthesis rate (FSR) was assessed from [(15)N]glutamate incorporation into blood and gut GSH, and duodenal protein synthesis from [(13)C]leucine incorporation into gut protein. Glutamine supplementation failed to alter erythrocyte GSH concentration (2189+/-86 vs. 1994+/-102 micromol L(-1) for glutamine vs. control; ns) or FSR (64+/-17% vs. 74+/-20% day(-1); ns). In the duodenum, glutamine supplementation was associated with a 92% rise in reduced/oxidized GSH ratio (P=.024) and with a 44% decline in GSH FSR (96+/-15% day(-1) vs. 170+/-18% day(-1); P=.005), whereas total GSH concentration remained unchanged (808+/-154 vs. 740+/-127 micromol kg(-1); P=.779). We conclude that, in dogs receiving enteral nutrition after a 3-day fast: (1) glutamine availability does not affect blood GSH, and, (2) in contrast, in the duodenum, the preserved GSH pool, along with a decreased synthesis rate, suggests that glutamine may maintain GSH pool and intestinal redox status by acutely decreasing GSH utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2006.02.002DOI Listing

Publication Analysis

Top Keywords

gsh
11
glutamine glutathione
8
3-day fast
8
synthesis rate
8
glutamine supplementation
8
gsh concentration
8
gsh pool
8
glutamine
7
glutathione kinetics
4
kinetics vivo
4

Similar Publications

Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers.

View Article and Find Full Text PDF

CuSeO@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione.

Talanta

January 2025

International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan. Electronic address:

Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH).

View Article and Find Full Text PDF

Copper excess induces autophagy dysfunction and mitochondrial ROS-ferroptosis progression, inhibits cellular biosynthesis of milk protein and lipid in bovine mammary epithelial cells.

Ecotoxicol Environ Saf

January 2025

College of Animal Science, Jilin University, Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding In Northeastern Frigid Area, Changchun 130062, China. Electronic address:

Excessive copper (Cu) has the potential risk to ecosystems and organism health, with its impact on dairy cow mammary glands being not well-defined. This study used a bovine mammary epithelial cell (MAC-T) model to explore how copper excess affects cellular oxidative stress, autophagy, ferroptosis, and protein and lipid biosynthesis in milk. Results showed the increased intracellular ROS, MDA, and CAT (P < 0.

View Article and Find Full Text PDF

Piceatannol upregulates USP14-mediated GPX4 deubiquitination to inhibit neuronal ferroptosis caused by cerebral ischemia-reperfusion in mice.

Food Chem Toxicol

January 2025

Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology of Ministry of Education, Key Laboratory of Chinese Medicine Research and Development of State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China. Electronic address:

Ischemic stroke is a very common brain disorder. This study aims to assess the neuroprotective effects of piceatannol (PCT) in preventing neuronal injury resulting from cerebral ischemia and reperfusion (I/R) in mice. Additionally, we investigated the underlying mechanisms through which PCT inhibits neuronal ferroptosis by modulating the USP14/GPX4 signaling axis.

View Article and Find Full Text PDF

The toxicity of jellyfish Rhopilema esculentum (R. esculentum), an edible jellyfish that releases venom, has been controversial. The aim of this comprehensive study was to investigate the toxic effects of jellyfish tentacle extract (TE), which was evaluated in vivo and in vitro using ICR mice and RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!