Positron emission tomography (PET) scan, mainly using 18 F-fluoro-deoxyglucose (FDG) as a tracer, is currently widely accepted as a diagnostic tool in oncology. It may lead to a change in staging and therefore in treatment management. PET can also be used to define the target volume in radiation treatment planning and to evaluate treatment response. In this review, we focused on issues concerning the role of PET in target volume delineation, both for the primary tumour and regional lymph nodes. A literature search was performed using MEDLINE. Furthermore, the following questions were addressed: does PET allow accurate tumour delineation and does it improve the outcome of radiotherapy, in terms of reduced toxicity or a higher tumour control probability? Combined computer tomography (CT) and PET information seems to influence target volume delineation. Using (CT-) PET scan, interobserver variability is being reduced. Only few studies compared delineation based on PET with pathologic examination, showing a complex relation. Preliminary results concerning incorporation of PET information in to target volume delineation varies in different tumour sites. In the field of lung cancer, incorporation of PET seems to improve tumour coverage and spare normal tissues, which may lead to less toxicity or the possibility to escalate dose. In oesophageal cancer and in lymphoma, PET scan can be used to include PET positive lymph nodes in the target volume. In most other tumour sites not enough data are currently available to draw definitive conclusions about the role of PET in radiation treatment planning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ctrv.2006.02.002DOI Listing

Publication Analysis

Top Keywords

target volume
20
treatment planning
12
pet
12
pet scan
12
volume delineation
12
tomography pet
8
radiation treatment
8
role pet
8
pet target
8
lymph nodes
8

Similar Publications

Aim: The aim of this systematic review and meta-analysis was to explore the effects of different pulmonary rehabilitation on respiratory function in mechanically ventilated patients and to determine the optimal type of intervention.

Method: A comprehensive search was conducted using PubMed, Embase, Web of Science, Joanna Briggs Institute(JBI), and the Cochrane Library from their inception until September 16th, 2024. The search targeted randomized controlled trials (RCTs) comparing pulmonary rehabilitation or usual care, for improving respiratory function in mechanically ventilated patients.

View Article and Find Full Text PDF

Respiratory support strategies in neonatal transport in the UK and Ireland.

Eur J Pediatr

January 2025

Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, Denmark Hill, London, UK.

Unlabelled: Infants requiring interhospital transfer for a higher level of care in the neonatal period are at increased risk of adverse outcomes. Optimising respiratory management is an important priority. The aim of this survey was to investigate current respiratory support strategies in neonatal transport and identify opportunities for the optimisation of clinical care and future research.

View Article and Find Full Text PDF

Background: Excessive sodium intake is a major concern for global public health. Despite multiple dietary guidelines, population sodium intakes are above recommended levels. Lack of health literacy could be one contributing issue and contemporary health literacy is largely shaped by social media.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways.

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!