Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels.

Biomaterials

Department of Applied Chemistry, Northwestern Polytechnic University, Xi'an, 710072, People's Republic of China.

Published: July 2006

Two pH-induced thermosensitive amphiphilic gels for controlled drug release were constructed with thermosensitive poly(N-isopropylacrylamide) (PNIPAm) and hydrophobic poly(ethyl acrylate) (PEA) by interpenetrating polymer network (IPN) technology. To obtain pH-induced thermosensitive functionality at physiological temperature, 5 mol % of acrylic acid (AAc) and N, N-dimethyl aminoethyl methacrylate (DMA) were incorporated into PNIPAm chain by their copolymerization. It is found that the IPN hydrogels show pH-induced thermosensitivity at physiological temperature. When the amphiphilic gels with IPN structure were immersed in water, the hydrophobic moieties formed by PEA have the potential to act as reservoirs for hydrophobic drugs, from which drug may be released slowly. Using drug daidzein (DAI) as a model molecule, controlled release behaviors of the IPNs were investigated. It is found that the presence of permanently hydrophobic PEA network can indeed slow the release rate of DAI and to some extent overcome disadvantageous burst effect of PNIPAm-based networks in hydration state. The release kinetics of DAI from the IPNs seems to follow pseudo-zero-order release character, regardless of the hydrogels in swollen or shrunken state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.02.042DOI Listing

Publication Analysis

Top Keywords

ph-induced thermosensitive
12
amphiphilic gels
12
controlled release
8
release behaviors
8
thermosensitive amphiphilic
8
physiological temperature
8
release
6
preparation properties
4
properties controlled
4
ph-induced
4

Similar Publications

Gauze or bandages are commonly used to effectively control bleeding during trauma and surgery. However, conventional treatment methods can sometimes lead to secondary damages. In recent years, there has been increased interest in developing adhesive hemostatic hydrogels as a safer alternative for achieving hemostasis.

View Article and Find Full Text PDF

Photoimmunotherapy faces challenges due to insufficient intratumoral accumulation of photothermal agents and the reversion of the cancer-immunity cycle during treatment. In this study, an anti-PD-L1-immobilized magnetic gold nanohut, AuNH-2-Ab, with photoresponsive, thermosensitive, and immunomodulatory properties to effectively suppress the growth of primary tumors, elevate immunogenic cell death (ICD) levels, reverse the tumor immune microenvironment (TIME), and consequently inhibit metastases are developed. AuNH-2-Ab achieves high tumor accumulation (9.

View Article and Find Full Text PDF

In this work, we compare nanoaggregation driven by pH-induced micellization (PIM) and by the standard solvent displacement (SD) method on a series of pH-, light-, and thermosensitive amphiphilic block copolymers. Specifically, we investigate poly(HIABMA)--poly(OEGMA) and poly(HIABMA)--poly(DEGMA--OEGMA), where HIABMA = [(hydroxyimino)aldehyde]butyl methacrylate, OEGMA = oligo(ethylene glycol)methyl ether methacrylate, and DEGMA = di(ethylene glycol)methyl ether methacrylate. The weakly acidic HIA group (p ≈ 8) imparts stability to micelles at neutral pH, unlike most of the pH-responsive copolymers investigated in the literature.

View Article and Find Full Text PDF

In this work, a stimuli-responsive three dimensional cross-linked hydrogel system containing carboxymethyl chitosan (CMC) and poloxamer composed of a poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO-PPO-PEO) block copolymer was constructed, and its aqueous solution was found to undergo a reversible sol-gel transition upon a temperature and/or pH change at a very low concentration. The hydrogels were synthesized via a cross-linking reaction using glutaraldehyde (GA) as the cross-linking agent. The structures of the hydrogels were characterized by FTIR, XRD, NMR and SEM studies and the swelling behaviour was studied in different buffered solutions.

View Article and Find Full Text PDF

Surfactant-free hydroxypropylcellulose (HPC) nanogels were synthesized by using thermo-sensitive HPC as a template to form HPC/PMAA nanoscale complex. The formation mechanism was owing to the interpolymer hydrogen bonding between HPC and PMAA induced phase transition of HPC in aqueous media. The average size of the resulting HPC nanogels ranges from about 98 to 241 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!