Recently, 1D NMR and IR spectra have been proposed as descriptors containing 3D information. And, as such, said to be suitable for making QSAR and QSPR models where 3D molecular geometries matter, for example, in binding affinities. This paper presents a study on the predictive power of 1D NMR spectra-based QSPR models using simulated proton and carbon 1D NMR spectra. It shows that the spectra-based models are outperformed by models based on theoretical molecular descriptors and that spectra-based models are not easy to interpret. We therefore conclude that the use of such NMR spectra offers no added value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci050282s | DOI Listing |
Bioinformatics
January 2025
Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.
Unlabelled: Metabolomics extensively utilizes Nuclear Magnetic Resonance (NMR) spectroscopy due to its excellent reproducibility and high throughput. Both one-dimensional (1D) and two-dimensional (2D) NMR spectra provide crucial information for metabolite annotation and quantification, yet present complex overlapping patterns which may require sophisticated machine learning algorithms to decipher. Unfortunately, the limited availability of labeled spectra can hamper application of machine learning, especially deep learning algorithms which require large amounts of labelled data.
View Article and Find Full Text PDFMolecules
January 2025
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.
Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA.
Five representatives of a novel type of di(hydroperoxy)alkane adducts of phosphine oxides have been synthesized and fully characterized, including their solubility in organic solvents. The phosphine oxide CyPO () has been used in combination with the corresponding aldehydes to create the adducts CyPO·(HOO)CHCH (), CyPO·(HOO)CHCHCH (), CyPO·(HOO)CH(CH)CH (), CyPO·(HOO)CH(CH)CH (), and CyPO·(HOO)CH(CH)CH (). All adducts crystallize easily and contain the peroxide and phosphine oxide hydrogen-bonded in 1:1 ratios.
View Article and Find Full Text PDFMolecules
January 2025
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
γ- and δ-lactones were formed by bromine oxidation of commercially available D-lyxose, as confirmed by IR analysis. The former was isolated, and its structure was confirmed by NMR spectra and X-ray analysis. In this structure, the presence of both intermolecular and intramolecular hydrogen bonds was found.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!