Tetrandrine is an alkaloid obtained from the root of a medicinal herb which is employed in China as a treatment for silicosis. One proposed mechanism for the development of silica-induced fibrosis is lung damage resulting from particle-induced inflammation and secretion of reactive compounds from alveolar phagocytes. Therefore, the objective of the present study was to determine if tetrandrine exhibited the ability to inhibit respiratory burst activity of pulmonary phagocytes. The data indicate that although tetrandrine is not cytotoxic to phagocytic cells, it is a potent inhibitor in vitro of zymosan-stimulated oxygen consumption, superoxide anion release, and hydrogen peroxide secretion by alveolar macrophages. Tetrandrine is also effective in vivo in preventing activation of alveolar macrophages after inhalation or intratracheal instillation of silica. Tetrandrine also inhibits stimulant-induced chemiluminescence by polymorphonuclear leukocytes. Since tetrandrine does not alter stimulant-induced depolarization of phagocytic cells, its inhibitory action is not via interference with receptor-ligand binding but rather must occur elsewhere in the stimulus-secretion coupling scheme.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jlb.50.4.412DOI Listing

Publication Analysis

Top Keywords

phagocytic cells
12
alveolar macrophages
8
tetrandrine
7
inhibition stimulant-induced
4
stimulant-induced activation
4
activation phagocytic
4
cells tetrandrine
4
tetrandrine tetrandrine
4
tetrandrine alkaloid
4
alkaloid root
4

Similar Publications

Sodium butyrate regulates macrophage polarization by TGR5/β-arrestin2 in vitro.

Mol Med

January 2025

Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, China.

Background: Macrophages play an important role in the pathogenesis of ulcerative colitis (UC). We will explore the effects of sodium butyrate (SB) on macrophage function.

Methods: The targets of butyric acid were identified using SwissTargetPrediction database and surface plasmon resonance (SPR).

View Article and Find Full Text PDF

Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma.

View Article and Find Full Text PDF

Arginase-1-specific T cells target and modulate tumor-associated macrophages.

J Immunother Cancer

January 2025

National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark

Background: Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization.

View Article and Find Full Text PDF

At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.

View Article and Find Full Text PDF

Environmental factors play a crucial role in bacterial virulence. During transmission, in a non-host environment bacteria are exposed to various environmental stress which could alter bacterial physiology and virulence. N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!