To localize the protease(s) involved in shedding of tumor necrosis factor receptors (TNF-R) from activated neutrophils (PMN) (Porteu, F., and C. Nathan (1990) J. Exp. Med. 172, 599-607), we tested subcellular fractions from PMN for their ability to cause loss of TNF-R from intact cells. Exposure of PMN to sonicated azurophil granules at 37 degrees C resulted in inhibition of 125I-TNF binding; 50% inhibition ensued when PMN were treated for approximately 1 min with azurophil granules equivalent to 2-3 PMN per indicator cell. The TNF-R-degrading activity in azurophil granules were identified as elastase by its sensitivity to diisopropyl fluorophosphate (DFP), alpha 1-antitrypsin and N-methoxysuccinyl-Ala-Ala-Pro-Val chloromethyl ketone (MSAAPV-CK), and by the ability of purified elastase to reproduce the effect of azurophil granules. Elastase preferentially acted on the 75-kDa TNF-R, reducing by 85-96% the binding of 125I-TNF to mononuclear cells expressing predominantly this receptor, while having no effect on endothelial cells expressing almost exclusively the 55-kDa TNF-R. Elastase-treated PMN released a 32-kDa soluble fragment of p75 TNF-R that bound TNF and reacted with anti-TNF-R monoclonal antibodies. In contrast, fMet-Leu-Phe-activated PMN shed a 42-kDa fragment from p75 TNF-R, along with similar amounts of a 28-kDa fragment from p55 TNF-R. Shedding of both TNF-Rs by intact activated PMN was more extensive than shedding caused by elastase and was completely resistant to DFP and MSAAPV-CK. Thus, the TNF-R-releasing activity of azurophil granules is distinct from that operative in intact stimulated PMN and could provide an additional mechanism for the control of cellular responses to TNF at sites of inflammation.
Download full-text PDF |
Source |
---|
mBio
December 2024
Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA.
Unlabelled: species evade degradation and proliferate within alveolar macrophages as an essential step for the manifestation of disease. However, most intracellular bacterial pathogens are restricted in neutrophils, which are the first line of innate immune defense against invading pathogens. Bacterial degradation within neutrophils is mediated by the fusion of microbicidal granules to pathogen-containing phagosomes and the generation of reactive oxygen species (ROS) by the phagocyte NADPH oxidase complex.
View Article and Find Full Text PDFFront Immunol
November 2024
Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
J Inflamm (Lond)
October 2024
Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
J Leukoc Biol
October 2024
Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
Neutrophils are the innate immune system's first line of defense, and their storage organelles are essential to their function. The storage organelles are divided into three different granule types named azurophilic, specific, and gelatinase granules, besides a fourth component called secretory vesicles. The isolation of neutrophil's granules is challenging, and the existing procedures rely on large sample volumes, about 400 mL of peripheral blood, precluding the use of multiple biological and technical replicates.
View Article and Find Full Text PDFKidney360
August 2024
Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!