The mechanism of GroEL/GroES folding/refolding of protein substrates revisited.

Org Biomol Chem

Imperial College Genetic Therapies Centre, Department of Chemistry Imperial College London, Flowers Building, Armstrong Road, Imperial College London, London, UKSW7 2AZ.

Published: April 2006

The thermodynamics and kinetics of zinc-cytochrome c (ZnCyt c) interactions with Escherichia coli molecular chaperone GroEL (Chaperonin 60; Cpn60) are described. Zinc(II)-porphyrin represents a flexible fluorescent probe for thermodynamic complex formation between GroEL and ZnCyt c, as well as for stopped-flow fluorescence kinetic experiments. Data suggests that GroEL and GroEL/GroES-assisted refolding of unfolded ZnCyt c takes place by a mechanism that is quite close to the Anfinsen Cage hypothesis for molecular chaperone activity. However, even in the presence of ATP, GroEL/GroES-assisted refolding of ZnCyt c takes place at approximately half the rate of refolding of ZnCyt c alone. On the other hand, there is little evidence for refolding behaviour consistent with the Iterative Annealing hypothesis. This includes a complete lack of GroEL or GroEL/GroES-assisted enhancement of refolding rate constant k(2) associated with the unfolding of a putative misfolded state I (Zn) on the pathway to the native state. Reviewing our data in the light of data from other laboratories, we observe that all forward rate enhancements or reductions could be accounted for in terms of thermodynamic coupling (adjusting positions of refolding equilibria) due to binding interactions between GroEL and unfolded protein substrates, driven by thermodynamic considerations. Therefore, we propose that passive kinetic partitioning should be considered the core mechanism of the GroEL/GroES molecular chaperone machinery, wherein the core function is to bind unfolded protein substrates leading to a blockade of aggregation pathways and to increases in molecular flux through productive folding pathway(s).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b517879gDOI Listing

Publication Analysis

Top Keywords

protein substrates
12
molecular chaperone
12
mechanism groel/groes
8
groel groel/groes-assisted
8
groel/groes-assisted refolding
8
zncyt takes
8
takes place
8
refolding zncyt
8
unfolded protein
8
refolding
6

Similar Publications

The recent emergence of bile salt hydrolase (BSH) enzyme as a therapeutic target reflects its unbound potential in mitigating hypercholesterolemia, obesity, and gastrointestinal issues. However, to bolster its industrial application, optimization of BSH assay lays the cornerstone for enhancing sensitivity, specificity, and reproducibility. The current study delved into optimizing the BSH assay parameters utilizing response surface methodology (RSM) and one-factor-at-a-time (OFAT) method for two novel, natural BSH producers, Heyndrickxia coagulans ATCC 7050 and Lactiplantibacillus plantarum ATCC 10012.

View Article and Find Full Text PDF

Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.

View Article and Find Full Text PDF

Research progress in deubiquitinase OTUD3.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

School of Economics and Management, Beijing Forestry University, Beijing 100083, China.

OTU domain-containing protein 3 (OTUD3) is a crucial deubiquitinase that exhibits significant expression differences across various disease models. OTUD3 plays a role in regulating biological functions such as apoptosis, inflammatory responses, cell cycle, proliferation, and invasion in different cell types. By deubiquitinating key substrate proteins, OTUD3 is involved in essential physiological and pathological processes, including innate antiviral immunity, neural development, neurodegenerative diseases, and cancer.

View Article and Find Full Text PDF

Terrestrial insect defences in the face of metal toxicity.

Chemosphere

January 2025

Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium. Electronic address:

Recently, there has been growing concern about the impacts of metal pollutants on insect populations, particularly as human societies increasingly rely on metal-based technologies. Unlike organic pollutants, metals - both essential and non-essential - are non-degradable and readily accumulate in insect tissues, sometimes reaching hazardous levels. While numerous studies address how insects cope with pesticide pollution, there is a notable scarcity of knowledge regarding their abilities to confront metal pollution.

View Article and Find Full Text PDF

Unraveling the potential contribution of DHHC2 in cancer biology via untargeted metabolomics.

Biochim Biophys Acta Mol Cell Biol Lipids

January 2025

Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh 453552, India. Electronic address:

DHHC-mediated protein-S-palmitoylation is recognized as a distinct and reversible lipid modification, playing a pivotal role in the progression and prevention of multiple diseases, including cancer and neurodegenerative disorders. Over the past decade, growing evidence indicates the crucial role of DHHC2 in preventing tumorigenesis by palmitoylation of various protein substrates. However, a comprehensive understanding of the specific impact of DHHC2 on cancer cell metabolic regulation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!