Developmental abnormalities of NT mouse embryos appear early after implantation.

Development

Unité de Biologie du Développement et de la Reproduction, UMR INRA-ENVA, Institut National de la Recherche Agronomique (INRA 78352, France.

Published: April 2006

In mammals, cloning by nuclear transfer (NT) into an enucleated oocyte is a very inefficient process, even if it can generate healthy adults. We show that blastocysts derived from embryonic stem (ES) donor cells develop at a high rate, correctly express the pluripotential marker gene Oct4 in ICM cells and display normal growth in vitro. Moreover, the majority of them implant in the uterus of recipient females. We combine embryological studies, gene expression analysis during gastrulation and generation of chimaeric embryos to identify the developmental origin (stage and tissue affected) of NT embryo mortality. The majority died before mid-gestation from defects arising early, either at peri-implantation stages or during the gastrulation period. The first type of defect is a non-cell autonomous defect of the epiblast cells and is rescued by complementation of NT blastocysts with normal ES or ICM cells. The second type of defect affects growth regulation and the shape of the embryo but does not directly impair the initial establishment of the patterning of the embryo. Only chimaeras formed by the aggregation of NT and tetraploid embryos reveal no growth abnormalities at gastrulation. These studies indicate that the trophoblast cell lineage is the primary source of these defects. These embryological studies provide a solid basis for understanding reprogramming errors in NT embryos. In addition, they unveil new aspects of growth regulation while increasing our knowledge on the role of crosstalk between the extra-embryonic and the embryonic regions of the conceptus in the control of growth and morphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.02317DOI Listing

Publication Analysis

Top Keywords

icm cells
8
embryological studies
8
type defect
8
growth regulation
8
growth
5
developmental abnormalities
4
abnormalities mouse
4
embryos
4
mouse embryos
4
embryos appear
4

Similar Publications

Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.

View Article and Find Full Text PDF

Development of an in vivo ovarian cancer peritoneal carcinomatosis model for radioimmunotherapy testing.

Methods Cell Biol

January 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France. Electronic address:

Currently, Ovarian Cancer (OC) is the most lethal gynecological malignancy. In most patients, it progresses without clinical signs or symptoms, leading to a late diagnosis when it has already spread in the peritoneal cavity as peritoneal carcinomatosis (PC). To date, OC PC management is based on cytoreductive surgery to remove the macroscopic disease, followed by chemotherapy.

View Article and Find Full Text PDF

Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.

View Article and Find Full Text PDF

Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

Viruses

December 2024

Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.

View Article and Find Full Text PDF

The Passage of Chaperonins to Extracellular Locations in Requires a Functional Dot/Icm System.

Biomolecules

January 2025

Department of Microbiology-Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.

HtpB, the chaperonin of the bacterial pathogen , is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support 's lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!