Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise.

Science

Institute for the Study of Planet Earth, Department of Geosciences, and Department of Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA.

Published: March 2006

Sea-level rise from melting of polar ice sheets is one of the largest potential threats of future climate change. Polar warming by the year 2100 may reach levels similar to those of 130,000 to 127,000 years ago that were associated with sea levels several meters above modern levels; both the Greenland Ice Sheet and portions of the Antarctic Ice Sheet may be vulnerable. The record of past ice-sheet melting indicates that the rate of future melting and related sea-level rise could be faster than widely thought.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1115159DOI Listing

Publication Analysis

Top Keywords

sea-level rise
12
ice sheet
8
paleoclimatic evidence
4
evidence future
4
future ice-sheet
4
ice-sheet instability
4
instability rapid
4
rapid sea-level
4
rise sea-level
4
rise melting
4

Similar Publications

The fate of the West Antarctic Ice Sheet (WAIS) is the largest cause of uncertainty in long-term sea-level projections. In the last interglacial (LIG) around 125,000 years ago, data suggest that sea level was several metres higher than today, and required a significant contribution from Antarctic ice loss, with WAIS usually implicated. Antarctica and the Southern Ocean were warmer than today, by amounts comparable to those expected by 2100 under moderate to high future warming scenarios.

View Article and Find Full Text PDF

Coastal vertical land motion (VLM), including uplift and subsidence, can greatly alter relative sea level projections and flood mitigations plans. Yet, current projection frameworks, such as the IPCC Sixth Assessment Report, often underestimate VLM by relying on regional linear estimates. Using high-resolution (90-meter) satellite data from 2015 to 2023, we provide local VLM estimates for California and assess their contribution to sea level rise both now and in future.

View Article and Find Full Text PDF

Climate change brings intense hurricanes and storm surges to the US Atlantic coast. These disruptive meteorological events, combined with sea level rise (SLR), inundate coastal areas and adversely impact infrastructure and environmental assets. Thus, storm surge projection and associated risk quantification are needed in coastal adaptation planning and emergency management.

View Article and Find Full Text PDF

Extending from Adaptation to Resilience Pathways: Perspectives from the Conceptual Framework to Key Insights.

Environ Manage

January 2025

TECNALIA Research & Innovation, Basque Research and Technology Alliance (BRTA), Energy, climate, and urban transition, Parque Tecnológico de Bizkaia, Derio, Spain.

The extent and timescale of climate change impacts remain uncertain, including global temperature increase, sea level rise, and more frequent and intense extreme events. Uncertainties are compounded by cascading effects. Nevertheless, decision-makers must take action.

View Article and Find Full Text PDF

Case studies of different types of precipitation at Ny-Ålesund, Arctic.

Sci Rep

January 2025

Department of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.

Arctic precipitation plays a crucial role in shaping the surface mass balance of Arctic sea ice and has wide-ranging impacts on local climate, ecosystems, and global sea level dynamics. With the Arctic undergoing warming trends, historical data and climate models indicate a shift from primarily snowfall to a rise in liquid and mixed forms of precipitation. This study tried to explain the microphysical characteristics and atmospheric conditions associated with different forms of precipitation and their transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!