Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2006-0052DOI Listing

Publication Analysis

Top Keywords

brain muscle
8
muscle arnt-like
8
arnt-like protein
8
peroxisome proliferator-activated
8
proliferator-activated receptor
8
receptor alpha
8
feedback loop
8
circadian rhythm
8
clock gene
8
bmal1 vivo
8

Similar Publications

Computed Tomographic Anatomy of the Head in Cockatiel (Nymphicus hollandicus).

Vet Med Sci

March 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.

Background: Nowadays, computed tomography (CT) scanning is one of the most practical and precise diagnostic imaging methods that can be utilized to evaluate the head in birds.

Objectives: This study aimed to present the normal anatomical data of the head of the cockatiel (Nymphicus hollandicus) using the CT method. In this research, the features of this bird's head were investigated in terms of bones, joints, muscles, sinuses and other constituent tissues.

View Article and Find Full Text PDF

Imaging Brain Networks: Insights into Mechanisms of Temporomandibular Disorders.

J Dent Res

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Temporomandibular disorders are a group of craniomaxillofacial disorders mainly characterized by pain and motor dysfunction of the temporomandibular joints and surrounding masticatory muscles. Clinically, patients with temporomandibular disorders often display central nervous system dysfunction, such as negative mood disorders, but the underlying cause remains unclear. Recent developments in neuroimaging techniques have facilitated new understanding.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!