When one sphere adheres to a second sphere, the location or orientation of the adhesion on the second sphere is seldom considered. However, when a sphere adheres to a prolate spheroid, the orientation of the adhesion is sometimes critical. We have performed Brownian dynamics simulations to predict the orientation of adhesion of a sphere on a prolate spheroid. When the spheroid has a high rotational diffusion coefficient, simulations show that the spherical particle adheres near the end of the spheroid. We tested our model experimentally for two systems: (1) oppositely-charged spherical and spheroidal colloids and (2) like-charged colloidal spheres and E. coli K-12 D21 bacteria. For the latter case, the spheres have previously been shown to adhere only to one end of the bacterium. Experiments in case (1) support the results of the simulations, while data from case (2) do not agree with predictions. Case (2) data reveal that the end-on adhesion of the spheres on the bacteria is not a purely Brownian phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2006.02.052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!