The B-spline linear combination of atomic orbitals method has been employed to study the valence and core photoionization dynamics of SF6. The cross section and asymmetry parameter profiles calculated at the time dependent density functional theory level have been found to be in fairly nice agreement with the experimental data, with the quality of the exchange-correlation statistical average of orbital potential results superior to the Van Leeuwen-Baerends 94 (LB94) ones [Phys. Rev. A 49, 2421 (1994)]. The role of response effects has been identified by a comparison of the time dependent density functional theory results with the Kohn-Sham ones interchannel coupling effects and autoionization resonances play an important role at low kinetic energies. Prominent shape resonances features have been analyzed in terms of "dipole prepared" continuum orbitals and interpreted as due to a large angular momentum centrifugal barrier as well as anisotropic (nonspherical) molecular effective potential. Finally, the method has been proven numerically stable, robust, and efficient, thanks to a noniterative implementation of the time dependent density functional theory equations and suitability of the multicentric B-spline basis set to describe continuum states from outer valence to deep core states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2178799 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Monolayer MoS is an effective electrocatalyst for the hydrogen evolution reaction (HER). Despite significant efforts to optimize the active sites, its catalytic performance still falls short of theoretical predictions. One key factor that has often been overlooked is the electron injection from the conductive substrate into the MoS.
View Article and Find Full Text PDFEur Thyroid J
January 2025
F Langhauser, Neurology, University Hospital Essen Department of Neurology, Essen, Germany.
Objective Thyroid hormones (TH) control a variety of processes in the central nervous system and influence its response to different stimuli, such as ischemic stroke. Post-stroke administration of 3,3',5-triiodo-L-thyronine (T3) has been reported to substantially improve outcomes, but the optimal dosage and time window remain elusive. Methods Stroke was induced in mice by transient middle cerebral artery occlusion (tMCAO) and T3 was administered at different doses and time points before and after stroke.
View Article and Find Full Text PDFPLoS One
January 2025
College of Agriculture and Biological Science, Dali University, Dali, China.
Density dependence is a vital mechanism for explaining tree species diversity. Empirical studies worldwide have demonstrated that neighbor density influences plant survival and growth in various communities. However, it remains unclear how neighbor density affects plant survival and growth over extended periods.
View Article and Find Full Text PDFPLoS One
January 2025
Wuzhou University, College of Food and Pharmaceutical Engineering, Guangxi, P. R. China.
Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!