Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant LTP1 are small helical proteins stabilized by four disulfide bridges and are characterized by the presence of an internal cavity, in which various hydrophobic ligands can be inserted. Recently, we have determined the solution structure of the recombinant tobacco LTP1_1. Unexpectedly, despite a global fold very similar to the structures already known for cereal seed LTP1, its binding properties are different: Tobacco LTP1_1 is able to bind only one monoacylated lipid, whereas cereal LTP1 can bind either one or two. The 3D structure of tobacco LTP1_1 revealed the presence of a hydrophobic cluster, not observed on cereal LTP1 structures, which may hinder one of the two entrances of the cavity defined for wheat LTP1. To better understand the mechanism of lipid entrance for tobacco LTP1_1 and to define the regions of the protein monitoring the accessibility of the cavity, we have complemented our structural data by the study of the internal dynamics of tobacco LTP1_1, using (15)N magnetic relaxation rate data and MD simulations at room and high temperatures. This work allowed us to define two regions of the protein experiencing the largest motions. These two regions delineate a portal that opens up during the simulation constituting a unique entrance of the hydrophobic cavity, in contrast with wheat LTP1 where two routes were detected. The hydrophobic interactions resulting from a few point mutations are strong enough to completely block the second portal so that the accessibility of the cavity is restricted to one entrance, explaining why this particular LTP1 binds only one lipid molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.20971 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!