Impact of subthalamic nucleus stimulation on the initiation of gait in Parkinson's disease.

Exp Brain Res

Institute of Human Physiology I, Faculty of Medicine, University of Milan, L.A.M.B. Pierfranco & Luisa Mariani, via Mangiagalli 32, 20133 Milan, Italy.

Published: July 2006

The effects of subthalamic nucleus (STN) stimulation on the anticipatory postural actions associated with the initiation of gait were studied in ten patients with idiopathic Parkinson's disease undergoing therapeutic deep brain stimulation. Kinematic, dynamic and electromyographic analysis was performed before and while subjects were starting gait in response to an external cue. Effects of STN stimulation on the standing posture preceding the go signal included significant improvement of the vertical alignment of the trunk and shank, decrease of the hip joint moment, backward shift of the center of pressure (CoP) and reduction of abnormal tonic and/or rhythmic activity in the thigh and leg muscles. Responses to bilateral STN stimulation were more consistent than those evoked by unilateral stimulation. Moreover, comparison between postural changes induced by STN stimulation applied prior to the gait initiation cue and during simple quiet standing revealed more significant responses in the former condition. Effects on the actual gait initiation process included shortening of the imbalance phase, larger backward/lateral displacement of CoP and more physiological expression of the underlying anticipatory muscular synergy. Additional changes were shortening of the unloading phase, shortening of the first-swing phase and increase in the length of the first step. Results demonstrate substantial influence of STN stimulation on functionally basic motor control mechanisms. In particular, the evidence of more significant responses upon attention-demanding conditions and the remarkable effects on postural programmes sub-serving feed-forward regulation of the onset of complex multijoint movements, suggests a consistent action on postural sub-systems relying on cognitive data processing and internal models of body mechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-006-0360-7DOI Listing

Publication Analysis

Top Keywords

stn stimulation
20
subthalamic nucleus
8
stimulation
8
initiation gait
8
parkinson's disease
8
gait initiation
8
gait
5
stn
5
impact subthalamic
4
nucleus stimulation
4

Similar Publications

Introduction: In 2015, directional leads have been released in Europe for deep brain stimulation (DBS) and have been particularly used for subthalamic nucleus (STN) DBS for Parkinson's disease (PD). In this study we aimed to compare an omnidirectional and directional leads cohort of PD patients when it comes to clinical effectiveness and to assess the correlation with volume of tissue activated - target overlap (VTA-target).

Methods: A total of 60 consecutive patients were retrospectively included.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate outcomes of deep brain stimulation (DBS) for Meige syndrome, compare the efficacy of globus pallidus internus (GPi) and subthalamic nucleus (STN) as targets, and identify potential outcome predictors.

Methods: The PubMed, Embase, and Web of Science databases were systematically searched to collect individual data from patients with Meige syndrome receiving DBS. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) scores.

View Article and Find Full Text PDF

Matched-controlled long-term disease evaluation and neuropsychological outcomes derived from deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson´s disease (PD) are lacking, with inconsistent results regarding the cognitive impact of this procedure. Here we study the long-term effects associated to DBS comparing outcomes with a matched control group. A prospective observational study of 40 patients with PD with bilateral STN-DBS, with a mean follow-up of 9 (6-12) years was conducted.

View Article and Find Full Text PDF

Background: Effects of subthalamic nucleus deep brain stimulation (STN-DBS) on neuropsychiatric symptoms of Parkinson's disease (PD) remain debated. Sensor technology might help to objectively assess behavioural changes after STN-DBS.

Case Presentation: 5 PD patients were assessed 1 before and 5 months after STN-DBS with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III in the medication ON (plus postoperatively stimulation ON) condition, the Montreal Cognitive Assessment, the Questionnaire for Impulsive-Compulsive Behaviors in Parkinson's Disease Rating Scale present version, the Hospital Anxiety and Depression Scale and the Starkstein Apathy Scale.

View Article and Find Full Text PDF

Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!