Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10(4)-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576293 | PMC |
http://dx.doi.org/10.1038/nmeth861 | DOI Listing |
Methods Mol Biol
January 2025
Dept of Biochemistry & Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFProteomics
January 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, I, SIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland Website.
Artificial metalloenzymes (ArMs) enable the integration of abiotic cofactors within a native protein scaffold, allowing for non-natural catalytic activities. Previous ArMs, however, have primarily relied on single cofactor systems, limiting them to only one catalytic function. Here we present an approach to construct ArMs embedding two catalytic cofactors based on the biotin-streptavidin technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!