Photonic components are superior to electronic ones in terms of operational bandwidth, but the diffraction limit of light poses a significant challenge to the miniaturization and high-density integration of optical circuits. The main approach to circumvent this problem is to exploit the hybrid nature of surface plasmon polaritons (SPPs), which are light waves coupled to free electron oscillations in a metal that can be laterally confined below the diffraction limit using subwavelength metal structures. However, the simultaneous realization of strong confinement and a propagation loss sufficiently low for practical applications has long been out of reach. Channel SPP modes--channel plasmon polaritons (CPPs)--are electromagnetic waves that are bound to and propagate along the bottom of V-shaped grooves milled in a metal film. They are expected to exhibit useful subwavelength confinement, relatively low propagation loss, single-mode operation and efficient transmission around sharp bends. Our previous experiments showed that CPPs do exist and that they propagate over tens of micrometres along straight subwavelength grooves. Here we report the design, fabrication and characterization of CPP-based subwavelength waveguide components operating at telecom wavelengths: Y-splitters, Mach-Zehnder interferometers and waveguide-ring resonators. We demonstrate that CPP guides can indeed be used for large-angle bending and splitting of radiation, thereby enabling the realization of ultracompact plasmonic components and paving the way for a new class of integrated optical circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature04594 | DOI Listing |
Phys Rev Lett
December 2024
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Physics, Korea University, Seoul, 02841, Republic of Korea.
Efficient energy transfer is crucial in electromagnetic communication. Therefore, producing a waveguide coupler that achieves broadband, nonreflective transmission is a challenging task. With the advancement of silicon-based integrated photonic circuits, fiber-to-chip coupling has become increasingly important.
View Article and Find Full Text PDFNanophotonics
January 2024
Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Sensors (Basel)
November 2024
Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
We investigate silicon waveguides with subwavelength-scale modulation for applications in free-electron-photon interactions. The modulation enables velocity matching and efficient interactions between low-energy electrons and co-propagating photons. Specifically, we design a subwavelength-grating (SWG) waveguide for interactions between 23-keV free electrons and ≈1500-nm photons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!