The expression of the clock protein PER2 in the limbic forebrain is modulated by the estrous cycle.

Proc Natl Acad Sci U S A

Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, QC, Canada H4B 1R6.

Published: April 2006

Daily behavioral and physiological rhythms are linked to circadian oscillations of clock genes in the brain and periphery that are synchronized by the master clock in the suprachiasmatic nucleus. In addition, there are a number of inputs that can influence circadian oscillations in clock gene expression in a tissue-specific manner. Here we identify an influence on the circadian oscillation of the clock protein PER2, endogenous changes in ovarian steroids, within two nuclei of the limbic forebrain: the oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala. We show that the daily rhythm of PER2 expression within these nuclei but not in the suprachiasmatic nucleus, dentate gyrus, or basolateral amygdala is blunted in the metestrus and diestrus phases of the estrus cycle. The blunting of the PER2 rhythm at these phases of the cycle is abolished by ovariectomy and restored by phasic estrogen replacement suggesting that fluctuations in estrogen levels or their sequelae are necessary to produce these effects. The finding that fluctuations in ovarian hormones have area-specific effects on clock gene expression in the brain introduces a new level of organizational complexity in the control of circadian rhythms of behavior and physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459398PMC
http://dx.doi.org/10.1073/pnas.0601310103DOI Listing

Publication Analysis

Top Keywords

clock protein
8
protein per2
8
limbic forebrain
8
circadian oscillations
8
oscillations clock
8
suprachiasmatic nucleus
8
influence circadian
8
clock gene
8
gene expression
8
clock
5

Similar Publications

Joint pain is the primary symptom of osteoarthritis (OA) and the main motivator for patients to seek medical care. OA-related pain significantly restricts joint function and diminishes quality of life. Despite the availability of various pain-relieving medications for OA, current treatment strategies often fall short in delivering adequate pain relief.

View Article and Find Full Text PDF

About one out of two diabetic patients develop diabetic neuropathy (DN), of these 20% experience neuropathic pain (NP) leading to individual, social, and health-economic burden. Risk factors for NP are largely unknown; however, premature aging was recently associated with several chronic pain disorders. DNA methylation-based biological age (DNAm) is associated with disease risk, morbidity, and mortality in different clinical settings.

View Article and Find Full Text PDF

The gut microbiota predicts and time-restricted feeding delays experimental colitis.

Gut Microbes

December 2025

Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.

The etiology of inflammatory bowel disease (IBD) remains unclear, treatment options unsatisfactory and disease development difficult to predict for individual patients. Dysbiosis of the gastrointestinal microbiota and disruption of the biological clock have been implicated and studied as diagnostic and therapeutic targets. Here, we examine the relationship of IBD to biological clock and gut microbiota by using the IL-10 deficient () mouse model for microbiota-dependent spontaneous colitis in combination with altered (4 h/4 h) light/dark cycles to disrupt and time-restricted feeding (TRF) to restore circadian rhythmicity.

View Article and Find Full Text PDF

Plants are exposed to pathogens at specific, yet predictable times of the day-night cycle. In Arabidopsis, the circadian clock influences temporal differences in susceptibility to the necrotrophic pathogen . The jasmonic acid (JA) pathway regulates immune responses against .

View Article and Find Full Text PDF

PERspectives on circadian cell biology.

Philos Trans R Soc Lond B Biol Sci

January 2025

Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.

Daily rhythms in the activities of PERIOD proteins are critical to the temporal regulation of mammalian physiology. While the molecular partners and genetic circuits that allow PERIOD to effect auto-repression and regulate transcriptional programmes are increasingly well understood, comprehension of the time-resolved mechanisms that allow PERIOD to conduct this daily dance is incomplete. Here, we consider the character and controversies of this central mammalian clock protein with a focus on its intrinsically disordered nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!