Hydrogen bond (HB) connectivity in aqueous electrolyte solutions at ambient and supercritical conditions has been investigated by molecular dynamics techniques. Alkali metal and halides with different sizes have been considered. Modifications in the water HB architecture are more noticeable in the first ionic solvation shells and do not persist beyond the second shells. The coordination pattern is established between partners located in the first and second solvation shells. High-temperature results show dramatic reductions in the coordination number of water; at liquidlike densities the number of HBs is close to 2, while in steamlike environments water monomers are predominant. The addition of ions does not bring important modifications in the original HB structure for pure water. From the dynamical side, the lifetime of HBs shows minor modifications due to the simultaneous competing effects from a weaker HB structure combined with a slower reorientational dynamics of water induced by the Coulomb coupling with solute. At supercritical conditions, the overall dynamics of HB is roughly 1 order of magnitude faster than that at ambient conditions, regardless of the particular density considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp056981p | DOI Listing |
Sci Rep
January 2025
Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.
The supercritical antisolvent (SAS) method can effectively improve the bioavailability of poorly water-soluble drugs. However, the current supercritical equipment and processes were not fully developed, making industrialization difficult to achieve. Therefore, an externally adjustable annular gap nozzle and its supporting equipment were designed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France. Electronic address:
3D printing of polysaccharide solutions is widely recognized as a highly promising method in the biomedical field for achieving complex customized shapes. One of the main challenges is in selecting conditions, in particular, the rheological properties of the system, to retain the printed shape. For the first time, the direct ink writing (DIW) is successfully applied to neat carboxymethyl cellulose (CMC) solutions without any additives or crosslinking, only by adjusting solutions' rheological properties.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Council for Geoscience, Private Bag X112, Pretoria, 0001, South Africa.
One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
Ensuring long-term wellbore integrity is critical for carbon dioxide geological storage. Ordinary Portland cement (PC) is usually used for wellbore primary cementing and plug operation, and set cement is easily corroded by acidic fluids, such as carbon dioxide, in underground high-temperature and high-pressure (HTHP) environments, resulting in a decrease in the mechanical properties and an increase in permeability. In order to achieve long-term wellbore integrity in a CO-rich environment This study introduces materials such as thermosetting vinyl ester resin (TSR), filler composite resin (FCR), and low-cost resin cement (RC).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
Recently, the extensive use of antibiotics has unavoidably resulted in the discharge of significant quantities of these drugs into the environment, causing contamination and fostering antibiotic resistance. Among various approaches employed to tackle this problem, heterogeneous photocatalysis has emerged as a technique for antibiotic degradation. This study explores the potential of CeO as a photocatalyst for the degradation of chloramphenicol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!