Effects of hypothyroidism on glucose and glutamine metabolism by the gut of the rat.

Clin Sci (Lond)

Department of Clinical Biochemistry, College of Medicine and Allied Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.

Published: September 1991

1. The metabolism of glucose and glutamine was studied in the small intestine and the colon of rats after 4-5 weeks of hypothyroidism. 2. Hypothyroidism resulted in increases in the plasma concentrations of ketone bodies (P less than 0.05), cholesterol (P less than 0.001) and urea (P less than 0.001), but decreases in the plasma concentrations of free fatty acids (P less than 0.05) and triacylglycerol (P less than 0.001). These changes were associated with decreases in the plasma concentrations of total tri-iodothyronine, free tri-iodothyronine, total thyroxine and free thyroxine. 3. Hypothyroidism decreased both the DNA content (by 30.5%) and the protein content (by 23.6%) of intestinal mucosa, with the protein/DNA ratio remaining unchanged. The villi in the jejunum were shorter (P less than 0.05) and the crypt depth was decreased by about 26.5% in hypothyroid rats. 4. Portal-drained visceral blood flow showed no marked change in response to hypothyroidism, but was accompanied by decreased rates of extraction of glucose, lactate and glutamine and release of glutamate, alanine and ammonia. 5. Enterocytes and colonocytes isolated from hypothyroid rats showed decreased rates of utilization and metabolism of glucose and glutamine. 6. The maximal activities of hexokinase (EC 2.7.1.1), 6-phosphofructokinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), citrate synthase (EC 4.1.3.28), oxoglutarate dehydrogenase (EC 1.2.4.2) and phosphate-dependent glutaminase (EC 3.5.1.2) were decreased in intestinal mucosal scrapings from hypothyroid rats. Similar decreases were obtained in colonic mucosal scrapings (except for citrate synthase and oxoglutarate dehydrogenase) from hypothyroid rats.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1042/cs0810347DOI Listing

Publication Analysis

Top Keywords

glucose glutamine
12
plasma concentrations
12
hypothyroid rats
12
metabolism glucose
8
decreases plasma
8
decreased rates
8
citrate synthase
8
oxoglutarate dehydrogenase
8
mucosal scrapings
8
decreased
5

Similar Publications

Sulforaphane acutely activates multiple starvation response pathways.

Front Nutr

January 2025

Aging and Metabolism Research Program, Oklahoma City, OK, United States.

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.

View Article and Find Full Text PDF

Autophagic flux-lipid droplet biogenesis cascade sustains mitochondrial fitness in colorectal cancer cells adapted to acidosis.

Cell Death Discov

January 2025

The Third Affiliated of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, China.

Cancer development is associated with adaptation to various stressful conditions, such as extracellular acidosis. The adverse tumor microenvironment also selects for increased malignancy. Mitochondria are integral in stress sensing to allow for tumor cells to adapt to stressful conditions.

View Article and Find Full Text PDF

Neuroprotective Efficacy of in Ischemic Stroke: Antioxidant and Anti-Inflammatory Mechanisms.

Cells

January 2025

Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea.

Stroke affects over 12 million people annually, leading to high mortality, long-term disability, and substantial healthcare costs. Although East Asian herbal medicines are widely used for stroke treatment, the pathways of operation they use remain poorly understood. Our study investigates the neuroprotective properties of (AM) in acute ischemic stroke using photothrombotic (PTB) and transient middle cerebral artery occlusion (tMCAO) mouse models, as well as an oxygen-glucose deprivation (OGD) model.

View Article and Find Full Text PDF

U32 is an industrial strain capable of producing therapeutically useful rifamycin SV. In early days of fermentation studies, nitrate was found to increase the yield of rifamycin along with globally, affecting both carbon and nitrogen metabolism in favor of antibiotic biosynthesis; thus, the (NSE) hypothesis was proposed. Although GlnR is likely the master regulator of the pleotropic effect of NSE, the global metabolism affected by NSE has never been systematically examined.

View Article and Find Full Text PDF

Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the G- and G-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!