The crystal structure of the mineral pearceite, (Ag,Cu)16(As,Sb)2S11, has been solved and refined at 300, 120 and 15 K. At room temperature pearceite crystallizes with trigonal symmetry, space group P3m1; the refinement of the structure leads to a residual factor of R = 0.0464 for 1109 independent observed reflections and 92 variables. The crystal structure consists of sheets stacked along the c axis. The As atoms form isolated (As,Sb)S3 pyramids, which typically occur in sulfosalts, copper cations link two S atoms in a linear coordination, and the silver cations are found in a fully occupied position and in various sites corresponding to the most pronounced probability density function locations (modes) of diffusion-like paths. These positions correspond to low-coordination (2, 3 and 4) sites, in agreement with the preference of silver for such environments. d10 silver-ion distribution has been determined by means of a combination of a Gram-Charlier description of the atomic displacement factors and a split-atom model. To analyse the crystal chemical behaviour of the silver cations as a function of temperature, a structural study was carried out at 120 K (R = 0.0450). The refinement indicates that the mineral exhibits the same structural arrangement as the room-temperature structure (space group P3m1) and shows that the silver cations are still highly disordered. In order to investigate a possible ordering scheme for the silver cations, a data collection at ultra-low temperature (15 K) was performed. The structural skeleton was found to be similar to that of the room-temperature and 120 K atomic structures, but the best solution was achieved with a fully split-atom model of five silver positions, giving an R value of 0.0449 for 651 observed reflections and 78 parameters. Although the silver cation densities condense into better defined modes, the joint probability density function still exhibits a strong overlapping of neighbouring sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S010876810600108X | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!