The relationship between photosynthetic energy conservation and thermal dissipation of light energy is considered, with emphasis on organisms which tolerate full desiccation without suffering photo-oxidative damage in strong light. As soon as water becomes available to dry poikilohydric organisms, they resume photosynthetic water oxidation. Only excess light is then thermally dissipated in mosses and chlorolichens by a mechanism depending on the protonation of a thylakoid protein and availability of zeaxanthin. Upon desiccation, another mechanism is activated which requires neither protonation nor zeaxanthin although the zeaxanthin-dependent mechanism of energy dissipation remains active, provided desiccation occurs in the light. Increased thermal energy dissipation under desiccation finds expression in the loss of variable, and in the quenching of, basal chlorophyll fluorescence. Spectroscopical analysis revealed the activity of photosystem II reaction centres in the absence of water. Oxidized beta-carotene (Car+) and reduced chlorophyll (Chl-), perhaps ChlD1 next to P680 within the D1 subunit, accumulates reversibly under very strong illumination. Although recombination between Car+ and Chl- is too slow to contribute significantly to thermal energy dissipation, a much faster reaction such as the recombination between P680+ and the neighbouring Chl- is suggested to form the molecular basis of desiccation-induced energy dissipation in photosystem II reaction centres. Thermal dissipation of absorbed light energy within a picosecond time domain deactivates excited singlet chlorophyll, thereby preventing triplet accumulation and the consequent photo-oxidative damage by singlet oxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erj104DOI Listing

Publication Analysis

Top Keywords

energy dissipation
16
light energy
12
dissipation light
8
energy
8
thermal dissipation
8
photo-oxidative damage
8
thermal energy
8
photosystem reaction
8
reaction centres
8
light
6

Similar Publications

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

Bioinspired thermally conducting packaging for heat management of high performance electronic chips.

Commun Eng

January 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.

Conventional electronic chip packaging generates a huge thermal resistance due to the low thermal conductivity of the packaging materials that separate chip dies and coolant. Here we propose and fabricate a closed high-conducting heat chip package based on passive phase change, using silicon carbide which is physically and structurally compatible with chip die materials. Our "chip on vapor chamber" (CoVC) concept realizes rapid diffusion of hot spots, and eliminates the high energy consumption of refrigeration ordinarily required for heat management.

View Article and Find Full Text PDF

Nanofriction plays an important role in the performance and lifetime of n-type or p-type TMD-based semiconductor nanodevices. However, the mechanism of nanofriction in n-type and p-type TMD semiconductors under an electric field is still blurry. In this paper, monolayers of n-MoSe and p-WSe materials were prepared by chemical vapor deposition (CVD), and their nanofriction behavior under positive electric field was investigated.

View Article and Find Full Text PDF

Negative capacitance (NC) effects in ferroelectrics can potentially break fundamental limits of power dissipation known as "Boltzmann tyranny." However, the origin of transient NC of ferroelectrics, which is attributed to two different mechanisms involving free-energy landscape and nucleation, is under intense debate. Here, we report the coexistence of transient NC and an S-shaped anomaly during the switching of ferroelectric hexagonal ferrites capacitor in an RC circuit.

View Article and Find Full Text PDF

An Automated Workflow to Discover the Structure-Stability Relations for Radiation Hard Molecular Semiconductors.

J Am Chem Soc

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.

Article Synopsis
  • Emerging photovoltaics require radiation-hard materials for use in outer space, but predicting their resilience to high-energy radiation is currently a challenge.
  • The research combines lab automation and machine learning to rapidly identify and test over 130 organic hole transport materials, assessing their stability under UVC light exposure.
  • Findings reveal that materials with fused aromatic rings are more stable, while certain chemical groups negatively impact stability, providing valuable insights for future molecular design in creating durable semiconductors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!