Objectives: The aim of this study was to evaluate the effect of cortical spreading depression (CSD) on the metabolic, hemodynamic, electrical and ionic properties during anesthesia as compared with the awake state.

Methods: The mitochondrial NADH redox state, reflected light, direct current (DC) potential, electrocorticography (ECoG), cerebral blood flow (CBF) and volume (CBV), and extracellular K(+) concentrations ([K(+)](e)), were measured continuously and simultaneously in real time using two unique monitoring systems that evaluate brain function. Three consecutive CSD waves were initiated using a KCl solution in both awake and anesthetized rats.

Results And Discussion: CSD caused typical amplitude changes: biphasic waves in reflectance, oxidation cycles in NADH, an increase in CBF, CBV and in [K(+)](e), a negative shift in DC potential and depression in ECoG. Anesthesia by equithesin decreased significantly the baseline levels of CBF and [K(+)](e), showing a reduction in oxygen supply and demand. After anesthesia, CSD significantly decreased [K(+)](e) and NADH oxidation cycles, indicating a reduction in oxygen demand and in oxygen balance, respectively. Furthermore, anesthesia reduced CSD wave frequencies by slowing the recovery period, showing a decline in energy production during brain activation, or by changing electrophysiological properties of the tissue. No changes were found in the propagation rate and in the initiation period of CSD, which may indicate that equithesin does not block CSD initiation. In addition, we found that the whole cerebral cortex reacts homogenously to CSD and that equithesin may reduce oxygen demand and energy production, which may have a protective effect on the brain exposed to pathophysiological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1179/016164105X49445DOI Listing

Publication Analysis

Top Keywords

cortical spreading
8
spreading depression
8
csd
8
oxidation cycles
8
reduction oxygen
8
oxygen demand
8
energy production
8
effects anesthesia
4
anesthesia responses
4
responses cortical
4

Similar Publications

Background: Migraine is the most common complex neurological disorder, affecting over a billion people worldwide. Neurogenic inflammation has long been recognized as a key factor in the pathophysiology of migraine though little research has been directed to investigating whether inflammation is greatest in migraine with aura or without, and whether inflammation is a permanent state in migraine or whether is an event related transitory state. Thus, the primary aim of this single-centre, retrospective study was to explore the potential clinical utility of the Serial Systemic Immune-Inflammatory Indices (SSIIi) as a comparative measure of duration and severity of inflammation derived from routine blood cell counts in migraine patients with aura and no-aura both within an acute inpatient setting and as outpatients.

View Article and Find Full Text PDF

High-resolution awake mouse fMRI at 14 tesla.

Elife

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.

High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.

View Article and Find Full Text PDF

Purpose: Photophobia is a common and debilitating symptom associated with migraine. Women are disproportionately affected by migraines, with a higher prevalence and more severe symptoms compared to men. This study investigated the effects of cortical spreading depression on light-aversive and dark-seeking behaviors in a rat model, with an emphasis on sex differences.

View Article and Find Full Text PDF

Progesterone receptors regulate susceptibility to spreading depression.

Exp Neurol

January 2025

Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.

Migraine patients often experience sensory symptoms called auras accompanying the headaches. Cortical spreading depression (CSD), a slow-propagating wave of neuroglial depolarization followed by hyperpolarization is proposed to be the neurological mechanism underlying these auras. We have previously found that progesterone regulates susceptibility to migraine through progesterone receptor (PR) activation.

View Article and Find Full Text PDF

1The brains of Parkinson's disease (PD) patients are characterized by the presence of Lewy body inclusions enriched with fibrillar forms of the presynaptic protein alpha-synuclein (aSyn). Despite related evidence that Lewy pathology spreads across different brain regions as the disease progresses, the underlying mechanism hence the fundamental cause of PD progression is unknown. The propagation of aSyn pathology is thought to potentially occur through the release of aSyn aggregates from diseased neurons, their uptake by neighboring healthy neurons via endocytosis, and subsequent seeding of native aSyn aggregation in the cytosol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!