The nature of intracytoplasmic lipid inclusions found in cultured rabbit and rat peritoneal mesothelial cells was examined by ultrastructural and biochemical techniques. Transmission electron microscopy also demonstrated extracellular release of these lipid bodies. Differential fixation with tannic acid revealed 2 types of inclusions, lamellated (lamellar bodies) and nonlamellated (homogeneous). The lamellar bodies were found near or in the Golgi apparatus and on the cell surface where occasionally they were observed in exocytotic pouches. The homogeneous inclusions were the predominant species being found primarily intracellularly. Lipid bodies obtained from the culture media over the cells displayed on electron microscopy the same morphological characteristics as those seen intracellularly. Exposure of confluent cultures of mesothelial cells to the vital lipid stain Nile Red caused the appearance of intensely fluorescent droplets in or on the cells at wave lengths consistent with staining for phosphatidylcholine-rich vesicles. Incubation of the cells with (14C)-choline and subsequent analysis of phospholipid formation revealed high rates of (14C)-phosphatidylcholine addition to both intra- and extracellular lipid pools. Taken together, mesothelial cells exhibit lipid bodies similar in ultrastructure to the surfactant containing organelles of Type II pneumocytes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mesothelial cells
12
lipid bodies
12
lipid inclusions
8
electron microscopy
8
lamellar bodies
8
lipid
7
cells
6
bodies
5
vivo vitro
4
vitro characterization
4

Similar Publications

Spatiotemporal dynamics of fetal liver hematopoietic niches.

J Exp Med

February 2025

Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France.

Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.

View Article and Find Full Text PDF

Previous abdominal surgery (PAS) increases risk of small bowel obstruction (SBO) due to adhesions, and appendectomy (appy) is an independent risk factor for abdominal adhesion-related complications. Peritoneal inflammation, e.g.

View Article and Find Full Text PDF

Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality.

View Article and Find Full Text PDF

The Multi-Kinase Inhibitor GZD824 (Olverembatinib) Shows Pre-Clinical Efficacy in Endometrial Cancer.

Cancer Med

January 2025

Gynaecological Cancer Research Group, Lowy Cancer Research Centre, School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia.

Objective: Endometrial cancer is one of the few cancers for which mortality is still increasing. A lack of treatment options remains a major challenge, particularly for some subtypes of the disease. GZD824, also known as olverembatinib, is a multi-kinase inhibitor previously investigated in clinical trials for chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia as a BCR-ABL inhibitor.

View Article and Find Full Text PDF

Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!