Iron nanoparticles, either formed in situ stabilized by 1,6-bis(diphenylphosphino)hexane or polyethylene glycol (PEG), or preformed stabilized by PEG, are excellent catalysts for the cross-coupling of aryl Grignard reagents with primary and secondary alkyl halides bearing beta-hydrogens and they also prove effective in a tandem cyclization/cross-coupling reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b601014hDOI Listing

Publication Analysis

Top Keywords

iron nanoparticles
8
alkyl halides
8
aryl grignard
8
grignard reagents
8
nanoparticles coupling
4
coupling alkyl
4
halides aryl
4
reagents iron
4
nanoparticles formed
4
formed situ
4

Similar Publications

Mn-doped MOF nanoparticles mitigating hypoxia via in-situ substitution strategy for dual-imaging guided combination treatment of microwave dynamic therapy and chemotherapy.

J Colloid Interface Sci

January 2025

The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:

Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.

View Article and Find Full Text PDF

Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity.

Talanta

January 2025

College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China. Electronic address:

FeO nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich FeO NPs (ZrFeO) using a one-pot solvothermal method.

View Article and Find Full Text PDF

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors.

View Article and Find Full Text PDF

Enhancing Li Deposition Behavior through Valence Gradient-Assisted Iron Layer.

Nano Lett

January 2025

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.

Uncontrolled lithium (Li) dendrite formation presents major safety risks and challenges in the Li host design. A novel approach is introduced, using a valence gradient in iron nanoparticles (Fe, Fe, Fe) to stabilize the anodes. An Fe component, with fast Li diffusion, ensures a steady supply of Li to Fe and Fe components, which have slower Li diffusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!