Alterations have been demonstrated in ligand and cognate receptor system of the transforming growth factor beta (TGF-beta) pathway in prostate cancer (PC). Still, little is known about changes in the activity of the intracellular Smad cascade of TGF-beta signaling during prostate carcinogenesis. We used immunohistochemistry to analyze phosphorylated Smad2 (p-Smad2), nuclear Smad4 and inhibitory-Smad7 in epithelial cells of normal, hyperplastic and malignant prostate. Specimens comprised 49 tissue cores of PC, 10 benign prostate hypertrophies and three normal prostates. Nuclear p-Smad2 (P<0.001) and nuclear Smad4 (P=0.023) were significantly decreased in PC with remarkable variations in cytoplasmic Smad7 levels. Substantial decreases in p-Smad2 and Smad4 levels were found in specimens with primary Gleason grades 3 and 4, whereas in grade 5, levels were markedly higher. Our results provide the first evidence for changes and reversible attenuation in the Smad system of the TGF-beta pathway during prostate carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.pcan.4500871DOI Listing

Publication Analysis

Top Keywords

prostate carcinogenesis
8
prostate
5
altered levels
4
levels smad2
4
smad2 smad4
4
smad4 associated
4
associated human
4
human prostate
4
carcinogenesis alterations
4
alterations demonstrated
4

Similar Publications

Obesity, dietary interventions and microbiome alterations in the development and progression of prostate cancer.

Front Immunol

January 2025

Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin and Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, United States.

Purpose Of Review: The role of the microbiome in prostate cancer is an emerging subject of research interest. Certain lifestyle factors, such as obesity and diet, can also impact the microbiome, which has been implicated in many diseases, such as heart disease and diabetes. However, this link has yet to be explored in detail in the context of prostate cancer.

View Article and Find Full Text PDF

Background: Prostate cancer remains the most frequent cancer among men, representing a significant health burden. Despite its high morbidity and mortality rates, the etiology of prostate cancer remains relatively unknown, with only non-modifiable established risk factors. Chronic inflammation has emerged as a potential factor in prostate carcinogenesis.

View Article and Find Full Text PDF

Objective: This study aims to utilize bioinformatics and network pharmacology to identify the active components of Bushen Tiansui decoction (BSTSD) and elucidate its molecular mechanisms and targets in promoting delayed fracture healing.

Materials And Methods: Using various databases and tools, we identified 155 active compounds within BSTSD's herbal components. Key compounds such as eriodictyol and β-sitosterol were noted for their significant anti-inflammatory, antioxidant, and immunomodulatory effects, which are crucial for promoting fracture healing.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second most common cancer in men globally. Its growth is driven by oxidative stress associated with inflammation, aging, and environmental factors, including diet and lifestyle. These factors contribute to multiple stages of PCa progression, including progression to castration-resistant prostate cancer (CRPC).

View Article and Find Full Text PDF

Temporally and Spatially Controlled Age-Related Prostate Cancer Model in Mice.

Bio Protoc

January 2025

Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA.

The initiation and progression of prostate cancer (PCa) are associated with aging. In the history of age-related PCa research, mice have become a more popular animal model option than any other species due to their short lifespan and rapid reproduction. However, PCa in mice is usually induced at a relatively young age, while it spontaneously develops in humans at an older age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!