The formation of hydroxystearic acid (HSA) and ketostearic acid (KSA) from oleic acid transformation has been documented in a variety of microbial species, including several isolated from the rumen of domesticated ruminant species. However, their ruminal production rates have not been established as influenced by fatty acid source. Dosing continuous cultures of mixed ruminal microorganisms with 1-(13C)-oleic acid increased the 13C enrichment of both HSA and KSA at 24 h postdosing, and showed that the majority (96 and 85%, respectively) of the HSA and KSA present in the 24-h samples originated from oleic acid. Several experiments using batch cultures of ruminal microorganisms showed that production of HSA and KSA was directly related to oleic acid input but was not affected by elaidic acid input, and that HSA was further metabolized to KSA but not to other fatty acids. When continuous cultures of ruminal microorganisms were supplemented with soybean oil or canola oil, production of 10-HSA + 10-KSA was related to oleic acid input but not to linoleic acid input. Daily production of 10-HSA + 10-KSA across treatments was 14.4 micromol/100 micromol oleic acid input into the cultures or 31.1 micromol/100 micromol oleic acid net loss. The results of this study quantify the formation of 10-HSA and 10-KSA from oleic acid transformation by ruminal microorganisms, and show that their accumulation in ruminal contents is directly related to the extent of oleic acid input and biotransformation by the rumen microbiota.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/136.4.926 | DOI Listing |
J Oleo Sci
January 2025
Department of Plant Sciences, North Dakota State University.
In this study, the total phenol, total flavonoid content, antioxidant capacity, phenolic component and fatty acid profiles of caper seed oils extracted by solvent extraction, sonication extraction and cold press methods were revealed. Total phenol amounts of caper seed oils extracted by cold press, sonication and solvent systems were recorded as 0.10, 0.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Department of Plant Sciences, North Dakota State University.
In this study, the effect of microwave drying on oil content, bioactive compounds, antioxidant activity, polyphenols and fatty acid profiles of fresh (control) and dried plum kernels was investigated. The oil quantities of plum seeds dried were found between 27.40% (control) and 42.
View Article and Find Full Text PDFGenomics
January 2025
Shennong Laboratory/ Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China. Electronic address:
High-oleic peanuts are increasingly valued in agricultural production and consumer markets. Nevertheless, limited genomic information hinders the integration of genetic analyses and modern breeding strategies. This study details a chromosome-level genome assembly of Kaixuan 016, a high-oleic peanut variety developed through gamma-radiation-assisted breeding, exhibiting enhanced agronomic traits.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.
Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.
Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.
Cell Death Discov
January 2025
Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
Emerging evidence shows that lipid metabolic reprogramming plays a vital role in tumor metastasis. The effect and mechanism of fatty acids and lipid droplets (LDs), the core products of lipid metabolism, on the metastasis of oral squamous cell carcinoma (OSCC), need further exploration. In this study, the influence of palmitic acid (PA) and oleic acid (OA) on the migration and invasion ability of OSCC cells was determined by in vitro experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!